
 Jonas Wälter et al., Int. J. Transp. Dev. Integr., Vol. 4, No. 4 (2020), 308–320 

© 2020 Farhad D.Mehta. Published under licence CCBY 4.0
ISSN: 2058-8305 (paper format), ISSN: 2058-8313 (online), http://www.witpress.com/journals
DOI: 10.2495/TDI-V4-N4-308-320

AIDING VEHICLE SCHEDULING AND RESCHEDULING 
USING MACHINE LEARNING

JONAS WÄLTER1, FARHAD D. MEHTA1, XIAOLU RAO2

1HSR University of Applied Sciences Rapperswil, Switzerland
2Swiss Federal Railways (SBB), Switzerland

ABSTRACT
Vehicle scheduling and rescheduling are central challenges for the planning and operation of railways. 
Even though these problems have been the subject of many research and development over several 
decades, railways still – with good reason – at the end of the day rely on well-trained and experienced 
personnel to provide practical solutions to these problems. Over the last couple of years, novel tech-
niques based on machine learning have been used to propose solutions to problems such as image and 
speech recognition that could not have been imagined previously. The aim of machine learning is to 
design algorithms that can improve automatically through experience. The experience possessed by 
traf!c dispatchers is often their greatest tool. It is, therefore, not implausible that machine learning 
techniques could also be used to provide better automation or support to the railway scheduling and 
rescheduling problems. This article describes the results of a study conducted to evaluate the extent to 
which solutions to the scheduling and rescheduling problems could be improved using a machine learn-
ing technique called reinforcement learning. The solutions obtained using this technique are compared 
with solutions obtained using classical algorithmic and constraint-based search techniques. The initial 
results have been obtained under a simulated environment developed by Swiss Federal Railways for the 
public Flatland Challenge competition. This research has been ranked number 4 in this international 
competition. Although these initial results have been obtained under simulated conditions and using 
limited computational resources, they look promising compared to classical scheduling and reschedul-
ing solutions and suggest that further work in this direction could be worthwhile
Keywords: deadlock avoidance, machine learning, multi-agent path !nding, neural network, railway 
operation, reinforcement learning, rescheduling, scheduling, traf!c management.

1 INTRODUCTION
This article summarizes the results of a study that aims to compare and summarize existing 
solutions and propose a novel, reinforcement learning (RL)-based solution to two fundamen-
tal challenges in the area of railway traf!c management. The !rst challenge is multi-agent 
path !nding (MAPF) in the context of the railway scheduling, where any number of trains 
(de!ned as agents) should be routed from their current location to the desired destination 
in a railway network. A route and time schedule are to be found with which all trains reach 
their destination in the shortest possible time. Thereby, it is also important to avoid con"icts 
between several trains. However, a train can unexpectedly be disturbed, for example by a 
malfunction. In such a situation, the second challenge is faced: the vehicle rescheduling prob-
lem (VRSP), where the malfunction causes a re-planning of routes.

The investigations are conducted using the Flatland framework, which was developed by 
Swiss Federal Railways (SBB) for the public Flatland Challenge competition (https://www.
aicrowd.com/challenges/"atland-challenge).

2 FLATLAND ENVIRONMENT
The basis for this study is the Flatland Environment, which is provided in the form of the 
Python library "atland-rl by SBB. This library can be used to simulate an arbitrary railway 
network and its trains and to evaluate different approaches.
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2.1 Railway network

A railway network is built as a two-dimensional rectangular grid with any number of cells in 
width and height. In Fig. 1, a railway network with a height of 20 cells and a width of 35 cells 
is shown. A cell is identi!ed by its coordinates in the form (row, column).

A cell can be empty and is then represented by trees, mountains or buildings for illustration 
purposes. For track cells, different cell types are valid, as shown in Fig. 2. Cells can be rotated 
or mirrored to obtain another cell of the same cell type. Due to the limitations in the reality 
of physical track switches, a cell can be exited in two directions at most when approaching 
from any direction.

2.2 Agent

An agent in the Flatland Environment corresponds to a train on a railway network. All agents 
are of the same length 1 and thus occupy only one cell at a time. Each agent has an assigned 
start cell and an assigned target cell. The target cell is displayed as a station in the railway 
network for illustration purposes. Each agent has a different but constant speed. The speed 
is given by the number of time steps the agent has to spend on the same cell before its next 
movement. There is no acceleration or braking when starting or stopping. There are also no 
speed restrictions on speci!c cells.

Depending on which actions are allowed on the current cell, an agent can move left, for-
ward, right or stop. An agent cannot move backwards. The only exception is on a dead-end 
cell, where the agent is turned around and can continue in the opposite direction.

Figure 1: Railway network with a height of 20 cells, a width of 35 cells and 45 trains.

Figure 2: Valid cell types.
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3 MULTI-AGENT PATH FINDING
MAPF is a fundamental problem in the !eld of traf!c planning and is de!ned by Cohen et al. 
[1] as follows:

Given an environment and agents with assigned start and goal locations, the Multi-
Agent Path Finding (MAPF) problem is to !nd collision-free paths for all agents from 
their start to their goal locations that optimize some criterion such as makespan or sum 
of travelled distances.

In the context of the Flatland Environment, a collision (or con"ict) corresponds to the situa-
tion when an agent is moving to a cell that is already occupied by another agent. Furthermore, 
the de!nition refers to makespan. This is the time span until the last of all agents has reached 
its target cell.

A solution for MAPF consists of a schedule that speci!es which agent is in which cell at 
what time. Finding a solution is one aspect of MAPF and the optimality of the solution is 
another aspect. According to Andreychuk et al. [2], !nding a valid solution is feasible in a 
realistic setting (i.e., it has a so-called polynomial time complexity), but !nding the optimal 
solution may not be feasible within an acceptable timeframe (i.e., the problem has the so-
called ‘NP-hard’ complexity: it is widely assumed that the optimal solution cannot be found 
in polynomial time, but no proof for this currently exists).

There are different approaches to !nd a solution to the present MAPF problem. In the fol-
lowing subsections, approaches providing an optimal solution are considered !rst, followed 
by approaches that provide a suboptimal solution but within a polynomial runtime.

3.1 Linear Programming (LP)

As a !rst method, the mathematical approach is considered. For this purpose, the MAPF 
problem is formulated as a mathematical optimization model. An optimization model con-
sists of variables, parameters, constraints and an objective function and describes a problem 
in mathematical form. The properties of the railway network and its agents are passed to the 
model as parameters and then result in an instance of the optimization problem. These param-
eters determine the constraints and the objective function. Finally, it is a purely mathematical 
task to !nd the corresponding variables that optimize the objective function in the desired 
manner (minimization or maximization) in compliance with the constraints. Over time, a 
variety of different so-called solvers have been developed for LP to calculate an optimal solu-
tion for such a mathematical system.

For the formulation of the MAPF problem as a mathematical optimization model, the work 
of Barták et al. [3] can be used as a basis and adapted to the characteristics of the Flatland 
Environment. In summary, the formulation can be described as follows: The presence of an 
agent on a cell is considered as an activity with a start time and an end time. An activity is 
optional, meaning it can be present or not. The cell path of an agent is !nally de!ned by the 
presence of its optional activities. These activities are also used to formulate the constraints 
preventing the simultaneous presence of multiple agents on the same cell.

3.2 Constraint-based search (CBS)

Another optimal approach is the CBS, presented by Sharon et al. [4]. CBS makes use of a 
constraint tree and nodes. A constraint node contains a valid or invalid MAPF solution, a set 
of constraints and the total cost of the solution (e.g., makespan).



 Jonas Wälter et al., Int. J. Transp. Dev. Integr., Vol. 4, No. 4 (2020) 311

In summary, CBS works as follows: First, an initial solution is produced consisting of the 
shortest paths from the start position to the target position for all agents. The root node of the 
constraint tree is built from this initial solution and an empty constraint set. This solution usu-
ally has con"icts between agents. From the root node, the !rst con"ict between two agents 
(A1 and A2) is used to form two new child nodes. The !rst child node is given a constraint 
that prohibits agent A1 from performing the action that leads to the con"ict. Then, a new 
shortest path is determined for agent A1, with respect to the constraint. This results in a new 
solution. The same is done for the second child node and agent A2. If a solution is free of 
con"icts, the optimal solution is found. Otherwise, the process is repeated with the next node. 
For this, the node with the lowest solution cost is selected as the next node.

During the CBS algorithm, the shortest path with respect to the given constraints must be 
determined for an agent. For this purpose, the well-known A* search algorithm is very well 
suited. As the required A* heuristic, the actual distance from the current position to the target 
position in the railway network is used.

3.3. Operator Decomposition & Independence Detection (OD+ID)

Another approach is a kind of cooperative path !nding consisting of the two components 
Operator Decomposition (OD) and Independence Detection (ID), presented by Standley [5].

3.3.1 Operator Decomposition
OD is based on the well-known A* search algorithm and uses nodes containing the current 
positions of all agents. The initial node contains the start positions of all agents. Then, the 
!rst agent in the sequence is considered. For each valid action of this agent, a new node is 
created with the new corresponding position of the agent. If an action causes a collision, the 
respective node is discarded. Between all valid nodes, a heuristic is used to select which node 
is considered next. With the next node and the next agent, this process is repeated until all 
positions match the target positions resulting in an optimal solution.

3.3.2 Independence Detection
The MAPF problem can be solved optimally with OD. However, instead of solving the 
entire problem with OD, the problem can be divided into smaller problems which are then 
solved with OD. ID can be used to build such sub-problems as follows: First, each agent is 
assigned to a separate group and its shortest path from the start position to the target position 
is considered the solution for this group. Afterwards, the solutions of all groups are checked 
against each other for con"icts. The two groups that cause the !rst con"ict are considered 
for the next steps: It is tried to !nd a con"ict-free but equivalent partial solution for one of 
the two groups. If this is not successful, the two groups are merged and the solution for the 
new group is searched using OD. Then, the solutions of all groups are checked again for 
con"icts. This procedure is repeated until no more con"icts occur and thus an optimal solu-
tion is found.

3.4 Optimal Anytime Algorithm (OAA)

The MAPF problem can be solved optimally with the OD+ID approach. A modi!ed version 
of that approach is the OAA, presented by Standley and Korf [6]. The OAA is used to limit 
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the runtime of OD+ID using a time limit. In this approach, the modi!ed OD+ID algorithm 
is called repeatedly with increasing parameters producing an ever-improving solution. Thus, 
the algorithm can be aborted anytime and then provides the best solution for that time. The 
name of the algorithm is misleading because it is not the optimal solution but the best solution 
so far at the time of abort.

3.5 Prioritized Planning (PP)

As an alternative approach, greedy algorithms can be considered as well. The greedy algo-
rithm developed in the course of this study is covered in the literature [7] under the designa-
tion PP. The procedure is straightforward: First, all agents are put into a sequence according 
to certain criteria. Then, the !rst agent is considered according to this order and its shortest 
path is determined. In the sense of greedy, this path is !nal and will not be changed anymore. 
In the next step, the second agent in the sequence is considered. For this agent, the shortest 
path is determined but without any con"icts with the previous agent. This path is again !nal 
and unchangeable. In the same way, the shortest con"ict-free paths are determined for all 
remaining agents in the sequence.

The result is fully dependent on the chosen planning order. There are different ways to 
prioritize the agents based on criteria:

r� Identi!cation number
r� Length of shortest path
r� Time step of !rst con"ict
r� Number of con"icts

The list is not complete, and other criteria could be explored. The criteria can be applied 
in ascending or descending order. In addition, the criteria can be used either individually or 
combined as multi-level prioritization. For example, the agents can be sorted !rst by shortest 
path length, then by !rst con"ict and !nally by identi!cation number.

3.6 Interim conclusion

There are several approaches to solve the MAPF problem. It is necessary to !gure out which 
approach provides the best possible solution in the shortest possible time. The performance of 
the different methods is examined and compared in Section 5. The collection of the described 
approaches does not claim to be complete. There are other optimal and suboptimal algo-
rithms for MAPF, which are not discussed in this paper.

4 VEHICLE RESCHEDULING PROBLEM
The VRSP is another fundamental problem in the !eld of traf!c planning and is de!ned by 
Li et al. [8] as follows:

The vehicle rescheduling problem (VRSP) arises when a previously assigned trip is dis-
rupted. A traf!c accident, a medical emergency and a breakdown of a vehicle are exam-
ples of possible disruptions that demand the rescheduling of vehicle trips. The VRSP can 
be approached as a dynamic version of the classical vehicle scheduling problem (VSP) 
where assignments are generated dynamically.
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In the context of the Flatland Environment, a disruption is a malfunction that occurs to a 
random agent at a random time and blocks the agent for a random number of time steps. 
There are existing and novel approaches to solve the VRSP.

4.1 Rescheduling

A !rst approach to solve the VRSP is already contained in the name of the problem: resched-
uling. It is an attempt to apply the MAPF algorithms to the VRSP as well. The principle is 
simple: First, an initial solution for all agents is determined using an MAPF algorithm. Then, 
the simulation is started with all the agents following their determined paths. This continues 
until a malfunction occurs. Since the original solution is no longer feasible due to the mal-
function, a new solution must be determined from the current positions of the agents. This 
can again be achieved using an MAPF algorithm. The described process is repeated continu-
ously until all agents reach their target positions.

However, it was found that the described approach cannot work completely, at least not 
with the characteristics of the Flatland Environment: With an optimal or very good solution 
for an MAPF problem, the trains usually follow each other very closely in the railway net-
work. Thus, there is a certain probability that a deadlock will occur during the reaction time 
after the occurrence of a malfunction. Under these circumstances, rescheduling using exist-
ing MAPF algorithms is not appropriate. For this reason, the rescheduling approach using 
these algorithms is not considered further.

4.2 Complete path reservation (CPR)

Rescheduling is susceptible to deadlocks caused by malfunctions. Thus, a robust scheduling 
approach is wanted which can eliminate this circumstance as described by Zuo [9]: ‘For an 
uncertain scheduling problem, the goal of robust scheduling is to generate a suboptimum 
scheduling scheme that is not sensitive to stochastic disturbances, i.e., robust scheduling 
emphasizes on the stability of scheduling schemes.’ In the course of this study, such an 
approach was elaborated and given the name CPR. In contrast to the approaches discussed 
so far, the agents are not controlled centrally, but each agent decides on its own in each step 
which action to perform next.

4.2.1 Procedure
The concept of reservation is introduced as the basis for this approach. Each track cell can 
be reserved by agents in the different directions. Thereby, a cell can be reserved by multiple 
agents in the same direction. However, it is not allowed to reserve a cell in one direction if the 
cell is already reserved in the opposite direction.

In the procedure, one agent after the other is processed. Each agent in the sequence must 
attempt to !nd the shortest path from its start position to its target position, for which all cells 
are not yet reserved in the opposite direction. Only if this succeeds, the cells of this path can 
be reserved in the corresponding directions and the respective action can be executed. Other-
wise, the agent is not allowed to execute the action.

The procedure is illustrated with an example in Fig. 3: Agent 1 !nds a non-reserved path to 
its target position and reserves the corresponding cells. For agent 2, there is no non-reserved 
path to its target position because some necessary cells are already reserved in the opposite 
direction by agent 1. In contrast, agent 3 !nds a non-reserved path again. Thereby, some of 
the necessary cells are already reserved by agent 1 but in the same direction.
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4.2.2 Agent prioritization
As described in the procedure, each agent acts independently and tries to reserve a complete 
path. Nevertheless, there is an order in which the agents can do this. In Fig. 3, the default pri-
oritization with ascending agent numbering is used. Instead, a different prioritization could 
be used, where agent 2 is !rst to act. In this case, agent 2 could reserve a complete path, 
but the other two agents could not, resulting in a different outcome. Thus, the result is fully 
dependent on the chosen agent prioritization.

4.3 Reinforcement learning

Due to the development in the !eld of arti!cial intelligence in recent years, various novel 
methods have emerged in computer science. A promising approach from the !eld of machine 
learning is the so-called RL. RL is the third area of machine learning methods besides super-
vised and unsupervised learning. The basic idea of RL is that a software agent autonomously 
learns what it should ideally do in which situation. For this purpose, the learning behaviour 
in nature is simulated.

4.3.1 Introduction
The scheme of RL is shown in Fig. 4. The main components are the agent, the environment 
and the action, which are already known in the context of the Flatland Environment. The 
learning takes place in a cycle between the agent (train) and the environment: The agent 
receives a state describing the current situation of the environment. Based on this state, the 
agent must decide which action to take. With the help of its learned knowledge, the agent 
selects an action and executes it in the environment. This changes the environment, and the 
new state is passed on to the agent again. In addition, the agent receives a reward from the 
environment indicating whether the previous action was good or not. The higher the reward, 
the better the action was. Thus, the agent learns which action has led to which reward in 
which state. This learning cycle can then be continued for any period to deepen the knowl-
edge of the agent.

4.3.2 Knowledge
While learning, the agent builds up its knowledge. The method used for this is called Deep 
Q-Learning with the help of a neural network consisting of several layers. The !rst layer is 

Figure 3: Complete path reservation with three agents on a partial railway network.
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the input layer that directly corresponds to the state. The last layer is the output layer contain-
ing a value as quality for each action. The action with the highest value is meant to be the best 
action for the given state.

A function is speci!ed which converts the state (input layer) into the action qualities 
(output layer). The parameters of this function are optimized with each learning cycle. To 
achieve a better result, any number of so-called hidden layers can be used as intermediate 
layers between the input layer and the output layer.

4.3.3 State
There are several ways to observe and represent the state of an environment. One approach 
is the global observation, which aims to re"ect all available information of the environment 
in the state. A multidimensional array is built as a state, which contains all properties of the 
individual cells and agents. However, this approach quickly results in an amount of data for 
the state, which cannot be handled by usual workstations.

In contrast, an approach with local observation does not cover the entire railway network 
but only the interesting part of it. It is observed what the track sections ahead of the agent 
look like and what is happening on them. The information about the sections (e.g., distances, 
number of agents, properties of the agents, possible con"icts) then form the state. With this 
approach, the state size is reduced while the important information is retained.

4.3.4 Enhancement: Output mapping
In the course of this study, several enhancements for the RL approach were elaborated. A 
!rst enhancement achieves a reduction of the output size of the neural network. The smaller 
the output size, the easier the decision should be. So far, the output layer has directly corre-
sponded to the four different actions of the agent. But an agent can exit a cell in a maximum 
of two directions. Thus, an agent can only choose between two different movement actions 
or the stop action.

With this knowledge, the output of the neural network can be adapted. The output no 
longer corresponds directly to the actions. Instead, the output now expresses whether the 
track more to the left, more to the right or a stop should be selected. This output is then 
mapped to the actual action.

Figure 4: Reinforcement learning in the context of the Flatland Environment.
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4.3.5 Enhancement: Decisions only
For each application of the neural network, the computation needs a certain amount of time. 
This enhancement aims to use the neural network only for real decisions and thus reducing 
the number of applications.

An analysis of the rail networks revealed that in most situations only one action is really 
relevant for an agent. If an agent is on a straight track and not just before an intersection, it 
can only continue or stop. However, stopping makes no sense because the aim is to reach the 
target as quickly as possible. A real decision is only required if the agent is located directly at 
an intersection with two possible exits (fork) or in front of a cell where another track section 
joins its current track (join). There is also a situation where both conditions apply.

With this knowledge, the procedure is adapted so that the neural network is only applied 
in case of a real decision. Otherwise, the agent simply performs the only action that makes 
sense. Thus, the number of applications of the neural network is reduced and the agent no 
longer must learn trivial decisions but can focus on the real decisions.

4.3.6 Enhancement: State partitioning
A further enhancement is related to the state consisting of a local observation. With local 
observation, both possible exit directions are considered, and a partial observation is made 
for each. So far, both partial observations have been concatenated into a one-dimensional 
array representing the state which is then passed to the neural network. However, the neural 
network does not know that the !rst half and the second half of the state have the same struc-
ture and represent two partial observations.

As an enhancement, the two partial observations are instead combined into a two-dimen-
sional array. The neural network can now be applied separately to both partial observations, 
resulting in one single quality for the respective action. This reduces both the input size and 
the output size of the neural network. Thus, the same knowledge can be applied to a mirrored 
situation as well which has not been the case so far.

4.3.7 Enhancement: Deadlock avoidance
An additional risk in railway networks is the occurrence of deadlocks with several trains 
blocking each other. So far, the detection of deadlocks has been left to RL: The agent should 
learn what action would cause a deadlock and avoid it. This detection requires a lot of learn-
ing, and there are alternative approaches to handle this task. However, complete deadlock 
detection cannot be done in polynomial time, according to Gawrilow et al. [10].

We, therefore, use the CPR technique described earlier in section 4.2 as a heuristic to 
detect deadlocks and shorten learning times in the following way: To check whether an action 
leads to a deadlock, it is tried to !nd a non-reserved path to the target position. If this is 
successful, the action certainly does not lead to a deadlock. If not, the action is assumed to 
lead to a deadlock. This approach, although not complete, is designed to be conservative. Any 
deadlock situation is correctly detected as a deadlock, but some deadlock-free situations are 
falsely also detected as deadlocks.

It should be noted that there are other heuristics for deadlock avoidance as well. For 
instance, one could similarly adapt other algorithms for MAPF.

5 RESULTS
Various approaches to the two fundamental problems MAPF and VRSP are discussed in this 
paper. All approaches were evaluated and compared using 20 different test cases provided by 
the Flatland Challenge.
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5.1 Multi-agent path !nding

The results of the various MAPF algorithms are listed and compared in Table 1. The used 
test cases differ in the number of track cells and the number of agents. For all algorithms, 
the runtime (in seconds) is listed. A test was aborted after 10 minutes with a timeout. For the 
suboptimal algorithms, the difference (diff) to the optimal solution concerning the makespan 
(opt. mksp) is additionally shown.

For the implementation of LP, the Python library mip with the included solver Coin-or 
branch and cut (CBC) was used. The alternative library PuLP led to similar results. Only 
20% of all test cases could be solved using LP within the time limit. The OD+ID approach 
seems to be much better suited in the given context, as around 80% of all test cases could 
be solved within a short time. The CBS approach achieved the best performance among the 
optimal approaches with a timeout rate of only 5%. Nevertheless, there are situations where 
this algorithm takes a long time.

The OAA approach is a suboptimal version of the OD+ID algorithm, which keeps running 
until it is aborted and then returns the best solution found so far. However, a timeout occurred 
in six test cases. In four of these test cases, an optimal solution had already been found within 
the time limit but not yet recognized as optimal. A better alternative is the suboptimal PP 
approach, which achieves the best results with respect to the runtime. Moreover, the quality 
of the solutions lies in a tolerable distance to the optimal solutions.

5.2 Vehicle rescheduling problem 

The results of both VRSP approaches are listed and compared in Table 2. For testing the 
VRSP approaches, more complex test cases were used. A maximum number of time steps 
(max. steps) are given before a test is aborted. If all agents (100%) reached their target within 
this limit, the number of used steps is stated. If not, the percentage of agents that reached their 
target within the limit is stated.

The CPR approach works well for simpler test cases, but the results get noticeably worse 
for more complex test cases. Across all test cases, an average of 85.75% of all agents had 
reached their target within the step limit. For the RL approach, local observation was used 
and enhanced with output mapping, real decisions and state partitioning. Regarding dead-
locks, detection by CPR was used to reduce the learning time. The learning took place on 
randomly generated railway networks with a height and width of 35 cells each and 80 agents. 
This con!guration corresponds to the properties of smaller test cases. The acquired knowl-
edge was applied to the test cases and resulted in an average success rate of 72.16%.

The success rate of RL is signi!cantly lower compared to the CPR approach. However, it 
must be noted that the possibilities of RL are far from being exhausted. The achieved success 
rate is very promising, considering that the exploration of RL was limited by the given hard-
ware and time. To further improve the performance, the learning process could be repeated 
with more complex railway networks and with better hardware.

A more detailed description of the methods used, and the results can be found in [11].
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6 CONCLUSION
In this study, various approaches for resolving both MAPF and the VRSP were investigated 
with respect to railway traf!c. 

Regarding MAPF, various approaches, including LP, CBS, OD+ID, OAA and PP, are dis-
cussed, tested and compared. It was shown that the theoretically optimal solutions (such 
as LP, CBS, OD+ID) were not suitable for use in a real-time traf!c management system. 
Instead, suboptimal algorithms like PP that provide fast solutions are more appropriate.

Regarding VRSP, the CPR approach was able to perform best in the evaluation. Surpris-
ingly, RL was almost able to keep up with it and thus demonstrated the potential of this novel 
approach. RL is still a very young and little researched area. There are many more optimiza-
tion possibilities, and the results could be improved with additional effort and computational 
power. In conclusion, this study has shown that RL is a novel but promising technique that 
could be used to aid vehicle scheduling and re-scheduling.

Table 2: Comparison of the VRSP approaches using different test cases.

Test Track cells Agents Max. steps
CPR RL

Steps Agents (%) Steps Agents (%)

0.0 140 1 600 379 100.00 412 100.00

0.1 90 1 600 527 100.00 Max. 90.00

1.0 190 3 600 594 100.00 Max. 98.75

1.1 250 3 600 Max. 93.75 Max. 85.00

2.0 212 5 720 627 100.00 Max. 90.00

2.1 231 5 720 627 100.00 Max. 88.75

3.0 374 10 960 Max. 88.75 Max. 56.25

3.1 415 10 960 Max. 88.75 Max. 73.75

4.0 399 10 960 752 100.00 Max. 98.75

4.1 496 10 960 Max. 85.00 Max. 75.00

5.0 693 15 1,120 Max. 91.25 Max. 76.25

5.1 544 15 1,120 Max. 92.50 Max. 73.75

6.0 1,346 10 1,760 Max. 75.00 Max. 75.00

6.1 1,203 10 1,760 Max. 68.00 Max. 57.00

7.0 1,378 40 1,600 Max. 84.00 Max. 55.00

7.1 1,444 40 1,600 Max. 88.00 Max. 67.00

8.0 1,602 10 1,760 Max. 65.00 Max. 51.00

8.1 1,552 10 1,760 Max. 52.00 Max. 53.50

9.0 2,514 50 2,560 Max. 64.50 Max. 46.00

9.1 2,936 50 2,560 Max. 78.50 Max. 32.50

Average: 85.75 Average: 72.16
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