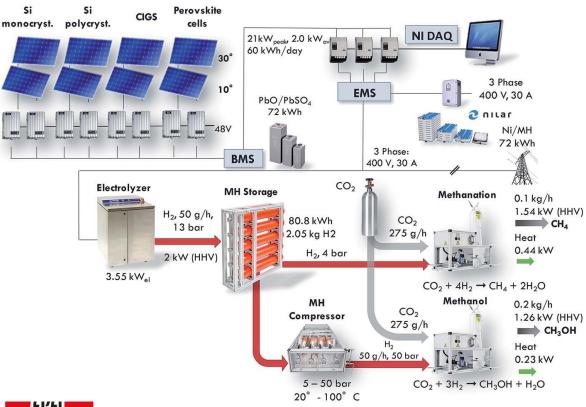

Ecole polytechnique fédérale de Lausanne Small-scale demonstration of the conversion of renewable energy to synthetic hydrocarbons

Emanuele Moioli

PtG meeting, Rapperswil, 13.06.2018

Basic considerations

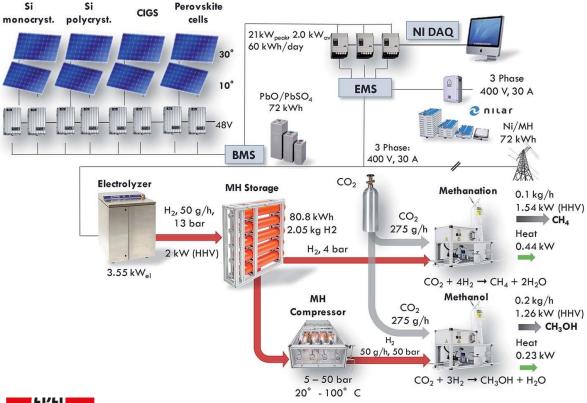
FÉDÉRALE DE LAUSANNE



- Carbon based economy
- Sustainability in closing the carbon circle
- Solar energy to hydrogen
- Synthesis of hydrocarbons from CO_2 and H_2

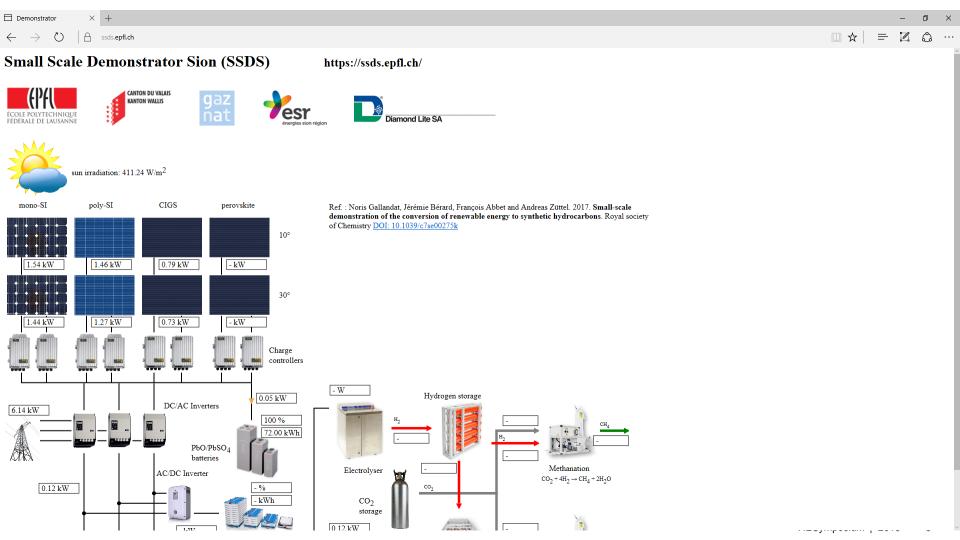
Combustion and CO₂ recovery

What do we do



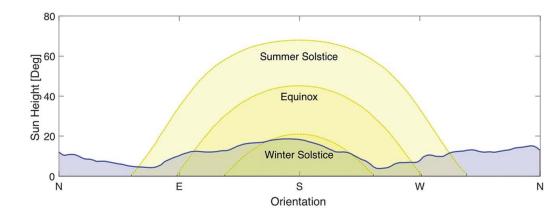
- 2 kW: average energy consumption of individuals
- Location: Sion
- Different PV panels
 - Storage in:
 - Batteries
 - Metal-hydrides
 - Synthesis of methanemethanol from CO₂ and H₂

3


Demonstrator runs

- Production can be monitored live:
- <u>https://ssds.epfl.ch/</u>

Energy produced and stored in batteries and hydrogen



Solar panels-installation

- 3 technologies installed:
 - Si monocristalline
 - Si polycrystalline
 - Copper Indium Gallium selenide
- 1 in delivery:
 - perovskite
- 2 inclinations:
 - 10°
 - 30°

Solar panels-results

- Type of the solar panels changes radically the properties
- All technologies can be efficiently used for energy production
- Variation in production during the year
 - Higher efficiency at low temperature

Туре	Efficiency [%]	Peak power [W]	Cost [CHF]
Si mono	16.29	3975	3120
Si poly	15.48	3900	3120
CIGS	13.84	2040	2147

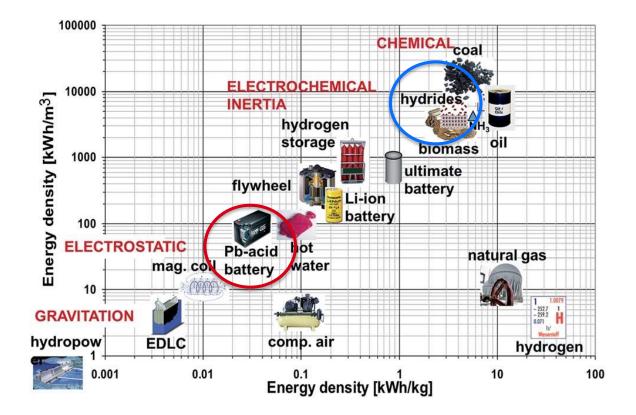
Energy storage - batteries

Ni - MH batteries

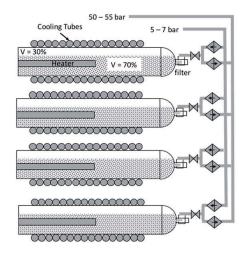
Capacity installed: 72 kWh Power unit: 1200 Wh Weight per unit: 29 kg Cost: 42770 CHF

Pb - acid batteries

Capacity installed: 72 kWh Power unit: 3000 Wh Weight per unit: 94.6 kg Cost: 15707 CHF


Energy storage – metal hydrides

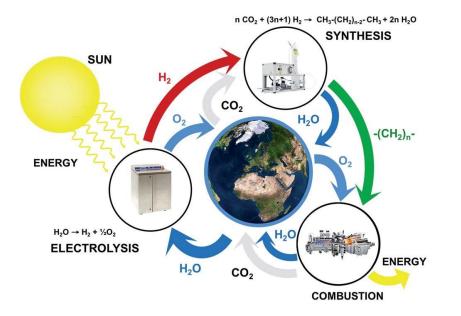
Capacity installed: 80 kWh 5 units 147 kg/MH – 2 kg/H₂ Power unit: 3000 Wh Volume: 45 L Energy density: 0.32 kWh/kg



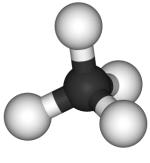
Energy storage – comparison

Molecular compressor

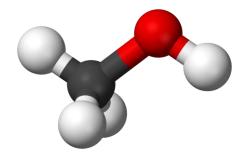
- Load at low T and low P
- Heating phase
- Discharge: high T and high P
- Ideal when high P is required in process units


Hydrogen production

Electrolyzer	Horgen S20	
Producer	Proton on site	
Power [kW]	3.55	
Production [gh ⁻¹]	47.3	
Efficiency [%]	53	
Cost [CHF]	93000	


Why synthetic fuels?

- Close C cycle
- Use existent distribution/utilization systems
- Move towards higher energy density
- Use in mobility



2 sample products:

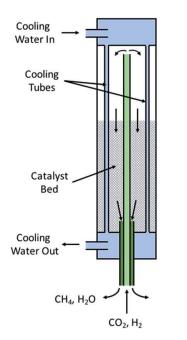
Methane

- Gaseous
- Use in existing distribution
- Efficient production

Methanol

- Liquid
- Distribution as liquid fuels
- More complicated production

Methanation reactor/1



- Fixed bed cooled catalytic reactor
- Catalyst: Ru/Al₂O₃

- Challenges:
 - TD limitation
 - High conversion required

Methanation reactor/2

- Solution:
 - Preheater: stabile functioning
 - Cooled section: heat removal
 - Control of the outlet temperature: adequate conversion with TD equilibrium
- Conversion achieved:
 - > 99.5% of CO₂ at inlet

Methanol reactor

- Challenges:
 - Operation at high pressure
 - Low conversion recycle required
 - Only CO₂ in feed: reduced catalyst activity
- Possible solutions:
 - Addition of WGS step
 - Coupling with methanation for energy efficiency

Outlook

- Set up ready for operation
- Technical evaluation of the operation
- Optimization of the various parts
- Process/heat integration
- Addition of the methanol reactor

Aknowledgments

EPFL – LMER Laboratory of materials for renewable energy

Prof. Andreas Züttel

Dr. Noris Gallandat

Ing. François Abbet Ing. Jérémie Bérard

