

# Neue Beiträge zur Auslegung von Kunststoffbauteilen

Werkstoffmechanik, Rollen, Schnappverbindungen

4. Rapperswiler Kunststoff-Forum, 3. September 2009 Prof. Dipl.-Ing. Johannes Kunz, Institutspartner



www.iwk.hsr.ch





## Inhalt

- 1. Motivation und Zielsetzung
- 2. Methodik
- 3. Werkstoffmechanik:
  - Wärmespannungen berechnen bzw. mit Ein-Punkt-Daten abschätzen
- 4. Kontaktmechanik von Kunststoff-Laufrollen
  - Konkav profilierte Laufmantelrollen
  - Verkanten zylindrischer Laufmantelrollen
  - Rollwiderstand von Kunststoff-Laufrollen
- 5. Schnappverbindungen
  - Fügeverhalten gekröpfter Schnapphaken
- 6. Schlussbetrachtungen





## 1. Motivation und Zielsetzung

#### Motivation:

- ingenieurtechnisch-wissenschaftliche Neugier
- Aufbau von Know-how f
  ür IWK und Nutzung bei Projekten
- Unterstützung der Praxis durch Publikationen



#### Ziele:

- Erweiterung bestehender Grundlagen
- Schaffung neuer Grundlagen

#### Anvisierte Ergebnisse:

- Theorien und Formeln f
  ür die Berechnung
- Empfehlungen f
  ür die Gestaltung



## 2. Methodik

- Zusammenhänge analysieren, entscheidende Parameter erkennen
- Parametereinflüsse mit FEM-Variationen ermitteln
- Ggf. Versuche zur Verifizierung durchführen
- Erkannte Gesetzmässigkeiten mathematisch beschreiben
- Praktikable Berechnungsformeln entwickeln: Möglichst treffend, aber einfach
- ggf. Empfehlungen f
  ür die Gestaltung ausarbeiten



$$E_{C}(t) \approx E_{C0} \cdot \left[ 1 - \frac{1}{3} \cdot (1 - c_{C}) \cdot \log_{10} \left( \frac{t}{t_{0}} \right) \right]$$
$$E_{C}(t, g) \approx E_{C}(t, g_{0}) \cdot a_{0}^{\left( \frac{g}{g_{0}} - 1 \right)}$$

4









## 3. Werkstoffmechanik

Wärmespannungen in Kunststoffteilen

- "Uralte" Problematik:
  - zeit- und temperaturabhängige Steifigkeit
  - temperaturabhängiges Wärmedehnverhalten
  - temperaturabhängige Relaxation der Wärmespannungen während ihres Entstehens
- Theoretische Beschreibung:

$$\sigma_{\mathcal{G}} = -\int_{\mathcal{G}_1}^{\mathcal{G}_2} E[t, \mathcal{G}(t)] \cdot \alpha[\mathcal{G}(t)] \cdot d\mathcal{G}$$

- Analytische Lösung des Integrals problematisch
- Beobachtungen:
  - Wärmespannungen beim Abkühlen (Zug) betragsmässig höher als beim Erwärmen (Druck) über die gleiche Temperaturdifferenz





## 3. Werkstoffmechanik

Wärmespannungen in Kunststoffteilen

- Bisherige Näherungsmodelle: in Praxis nicht etabliert
- Entwicklung einer Berechnungsformel für die maximalen Spannungswerte bei schockartiger Temperaturänderung:

$$\sigma_{\mathcal{G}} \approx -E_{C}(t^{*}, \mathcal{G}^{*}) \cdot \alpha \cdot \Delta \mathcal{G}$$
$$E_{C}(t^{*}, \mathcal{G}^{*}) \approx E(\mathcal{G}_{R}) \cdot a_{0}^{\left(\frac{\mathcal{G}^{*}}{\mathcal{G}_{R}}-1\right)} \cdot \left[1 - \frac{1}{3} \cdot (1 - c_{C}) \cdot \log_{10}\left(\frac{t^{*}}{t_{0}}\right)\right]$$

mit

τ

$$=\frac{c_{p}\cdot\rho\cdot d^{2}}{4\cdot\lambda}\cdot\left(\frac{\pi}{2}-\frac{3,2}{\frac{\alpha_{g}\cdot d}{\lambda}+2,5}\right)^{-2}$$

 $t^* \approx 3 \cdot \tau$  für Erwärmung bzw.  $t^* \approx 6 \cdot \tau$  für Abkühlung

$$\mathcal{G}^* \approx \frac{1}{4} \cdot \left( \mathcal{G}_{\max} + \mathcal{G}_1 + 2 \cdot \mathcal{G}_2 \right)$$

SwissPlastics 29(2007)4, S. 25-28 (mit Fabian Furrer)









# 3. Werkstoffmechanik

Wärmespannungen in Kunststoffteilen

Noch einfacher: Abschätzformel, angelehnt an Formel für konstante Werte von E und  $\alpha$ 

$$\sigma_{\mathcal{G}} \approx -E \cdot \alpha \cdot \delta \cdot \Delta \mathcal{G} = -E \cdot \alpha \cdot \delta_0^{\left(\frac{\mathcal{G}}{\mathcal{G}_R} - 1\right)} \cdot \left(\mathcal{G} - \mathcal{G}_R\right)$$

Basisgrösse  $\delta_0$  des empirisch bestimmten, temperaturabhängigen Einflussfaktors  $\delta$ :

| Werkstoffgruppe              | Zahlenfaktor $\delta_0$ |          |
|------------------------------|-------------------------|----------|
|                              | Erwärmen                | Abkühlen |
| Amorphe Thermoplaste         | 0,80                    | 0,88     |
| Teilkristalline Thermoplaste | 0,61                    | 0,71     |

Gute Übereinstimmung mit Messergebnissen

Kunststoffe 98(2008)8, S. 99-104 (mit Mario Studer)



## 4. Kontaktmechanik von Kunststoffrollen Konkav profilierte Laufmantelrollen

### Problemstellung:

- Berechnungsformeln aus der Hertzschen Theorie entweder bestätigen oder ggf. geeignet anpassen
- Entwicklung einer optimierten Profilgeometrie f
  ür m
  öglichst kleine Kontaktfl
  ächen
- Situation:
  - Allgemeine Punktberührung zwischen konkav profilierter Rolle und zylindrischer Unterlage









$$E_{V} = 2 \cdot \frac{E_{C} \cdot E_{L}}{E_{C} + E_{L}} \qquad R_{V} = \frac{2}{\frac{2}{d_{R}} - \frac{1}{r_{1}} + \frac{1}{r_{2}}}$$
$$\eta = \cos \theta = \frac{\left|\frac{2}{d_{R}} + \frac{1}{r_{1}} - \frac{1}{r_{2}}\right|}{\frac{2}{d_{R}} - \frac{1}{r_{1}} + \frac{1}{r_{2}}}$$

## 4. Kontaktmechanik von Kunststoffrollen Konkav profilierte Laufmantelrollen

- Berechnungsformeln:
  - Kontaktflächenabmessungen:

$$a \approx \frac{1,1}{\left(1 - \eta^{0,6}\right)^{0,4}} \cdot \sqrt[3]{\frac{F \cdot R_V}{E_V}} \qquad b \approx 1,1 \cdot \left(1 - \eta^{0,5}\right)^{0,25} \cdot \sqrt[3]{\frac{F \cdot R_V}{E_V}}$$

Maximaler Kontaktdruck:

$$p_{0} \approx 0.388 \cdot \left(1-\eta^{2}\right)^{0,2} \cdot \sqrt[3]{\frac{F \cdot E_{V}^{2}}{R_{V}^{2}}}$$

Abplattung:

$$w \approx 1,23 \cdot \left(1 - \eta^2\right)^{0.23} \cdot \left(1 - 0,14 \cdot \frac{d_N}{d_R}\right) \cdot \left(1,07 - 0,13 \cdot \frac{l}{d_R}\right) \cdot \sqrt[3]{\frac{F^2}{E_V^2 \cdot R_V}}$$

$$\varepsilon_{\max} \approx 0.28 \cdot \frac{P_0}{E_C} \approx 0.11 \cdot \left(1 - \eta^2\right)^{0.2} \cdot \frac{1}{E_C} \cdot \sqrt[3]{\frac{F \cdot E_V^2}{R_V^2}}$$

Max. Vergleichsspannung (GEH, von Mises):

$$\sigma_{V \max} = \sigma_V \left( z \approx \frac{a \cdot b}{a + b} \right) \approx 0.645 \cdot p_0 = 0.25 \cdot \left( 1 - \eta^2 \right)^{0.2} \cdot \sqrt[3]{\frac{F \cdot E_V^2}{R_V^2}}$$

#### SwissPlastics 30(2008)9, S. 17-20 (mit Wilfried Bürzle)





Optimierungsprofi

Basisprofi





Ja Lösung für Optimierungsprofil

## 4. Kontaktmechanik von Kunststoffrollen Konkav profilierte Laufmantelrollen

- Profiloptimierung:
  - Geringer Kontaktdruck: Grosse Kontaktfläche
  - Geringer Schlupf und Rollwiderstand: Kleine Kontaktfläche
- Ergebnis: Einfach handhabbare Prozedur
  - Reduktion der Kontaktflächenabmessungen um 2 - 40 % bzw. 11 - 47 %
  - Gesamtfläche: Zunahme um 0 bis 9 %



SwissPlastics 31(2009)7-8, S. 23-26 (mit Wilfried Bürzle) 10







## 4. Kontaktmechanik von Kunststoffrollen Verkanten zylindrischer Laufmantelrollen

### Problemstellung:

- Zylindrische Rollen auf ebener Unterlage: Theoretische Linienberührung
- Verkanten: bei
  - Unebenheiten der Unterlage
  - Nachgiebigkeit der
  - Ungenauigkeiten der Rollenlagerung
- Beim Verkanten: Theoretische Punktberührung mit komplexen Kontaktverhältnissen beim Übergang von Linien- zu Punktberührung

#### Lösungsversuch:

 Entwicklung von N\u00e4herungsfunktionen f\u00fcr die kontaktmechanischen Gr\u00f6ssen in Abh\u00e4ngigkeit des Verkantungswinkels β





$$E_V = 2 \cdot \frac{E_C \cdot E_L}{E_C + E_L}$$

 $w_0 \approx 5.7 \cdot \frac{F}{E_V \cdot l_a}$ 

4. Kontaktmechanik von Kunststoffrollen Verkanten zylindrischer Laufmantelrollen

#### Berechnungsformeln:

- Kontaktflächenabmessungen: (noch keine praktikable Formel)
- Maximaler Kontaktdruck:

$$p_{\max} \approx p_0 \cdot \left\{ 1 + \left(\frac{E_V \cdot l_a}{F}\right)^{0.25} \cdot \left[ 4,7 + 10 \cdot \left(\frac{a}{d_R}\right)^{0.25} \right] \cdot \beta^{0.6} \right\}; \qquad p_0 \approx 0,590 \cdot \sqrt{\frac{F \cdot E_V}{l_a \cdot d_R}}$$

Abplattung:  

$$w \approx w_0 \cdot \left(1, 2 - 0.65 \cdot \frac{d_N}{d_N}\right) \cdot \left(1 - 0.95 \cdot \frac{a}{d_N}\right) \cdot \left[1 + 0.065 \cdot \frac{a}{d_N}\right] \cdot \left[$$

$$\cdot \left(1, 2 - 0, 65 \cdot \frac{d_N}{d_R}\right) \cdot \left(1 - 0, 95 \cdot \frac{a}{l_a}\right) \cdot \left[1 + 0, 016 \cdot \left(\frac{F}{E_V \cdot l_a^2}\right)^{-0, 72} \cdot \left(1 - e^{-0, 82 \cdot \beta}\right)\right]$$

Maximale Dehnung:  

$$\varepsilon_{\max} \approx \left[1+2,67 \cdot \left(\frac{a}{d_R}\right)^{0,2}\right] \cdot \left(\frac{F}{E_V \cdot d_R^2}\right)^{0,29} \cdot \left[0,08 \cdot \left(\frac{d_R}{l_a}\right)^{0,14} + 2,3 \cdot \beta^{0,6}\right]$$

• Max. Vergleichsspannung (GEH, von Mises)  

$$\sigma_{V \max} = p_{\max} \cdot [1,41 - 0,65 \cdot (1 - e^{-160 \cdot \beta})]$$



## 4. Kontaktmechanik von Kunststoffrollen Rollwiderstand von Kunststoff-Laufrollen

## Aufgabe:

- Berechnung des Rollwiderstands von Kunststoffrollen mit FEM
- Entwicklung einer möglichst einfachen Formel für die Abschätzung des Rollwiderstands "von Hand"
- Probleme:
  - Erfassung der Viskoelastizität im FEM Modell
  - Bewältigung der grossen Datenmenge (extrem feine Vernetzung)







## 4. Kontaktmechanik von Kunststoffrollen Rollwiderstand

## FEM-Ergebnisse:

- FEM-Berechnung möglich, jedoch sehr aufwändig:
  - 17-Parameter Maxwell-Materialmodell für die Viskoelastizität
  - Modellierung des Rollvorgangs
  - rund 10<sup>4</sup> bis 10<sup>5</sup> z.T. extrem kleine Elemente f
    ür ein 2D-Modell, d.h. Beschr
    änkung auf zylindrische Rollen
  - Räumlich gekrümmte Rollenprofile erfordern 3D-Modelle: noch aufwändiger
- Akzeptable Übereinstimmung mit Versuchsresultaten





#### Dank für Unterstützung:

 Versuche: Denipro AG, Weinfelden
 denipro.
 unternehmen für fördertechnische Teile und Komponentenbau
 Dynamische Werkstoffdaten: IKT Institut für Kunststofftechnik (FHNW)
 Brugg-Windisch



Fachhochschule Nordwestschweiz Hochschule für Technik

Hochschule für Technik Institut für Kunststofftechnik

2

## 4. Kontaktmechanik von Kunststoffrollen Rollwiderstand von Kunststoff-Laufrollen









## 4. Kontaktmechanik von Kunststoffrollen Rollwiderstand von Kunststoff-Laufrollen

- Rechenmodell:
  - Näherungsformel f
    ür Handrechnungen:

$$M_R \approx 0,68 \cdot \tan \delta_V \cdot F \cdot b \approx 0,49 \cdot \tan \delta_V \cdot F \cdot \sqrt{\frac{F \cdot R_V}{l_a \cdot E_V}}$$

 Werkstoffeigenschaften: erfasst durch die mechanischen Verlustfaktoren und die Elastizitätsmoduln der Werkstoffe von Rolle und Unterlage

$$\tan \delta_{V} = \frac{\tan \delta_{U} \cdot E_{R}' + \tan \delta_{R} \cdot E_{U}'}{E_{R}' + E_{U}'} \approx \frac{\tan \delta_{U} \cdot E_{R} + \tan \delta_{R} \cdot E_{U}}{E_{R} + E_{U}}$$
$$E_{V} = 2 \cdot \frac{E_{R} \cdot E_{U}}{E_{R} + E_{U}}$$

SwissPlastics (demnächst, mit Mario Studer)







Principal Total Strain Max

5. Schnappverbindungen Fügeverhalten gekröpfter Schnapphaken

- Ausgangslage:
  - Bekannte Berechnungsformeln wenig wirklichkeitsnah
  - Fügegeometrie normalerweise unzweckmässig

#### Problemstellung:

- Erarbeitung von Formeln f
  ür die realistische Berechnung von F
  üge- und L
  ösekraft
- Entwicklung einer optimierten Fügegometrie für minimale Fügekraft

#### Erkenntnisse:

- Kerbwirkung wie beim geraden Schnapphaken
- Optimierte Fügegeometrie analog zum geraden Schnapphaken
- Füge- und Lösekraft formelmässig erfassbar





#### Empfohlenes Verhältnis:

 $4,0 \le r_1/f \le 6,0$ 



## 5. Schnappverbindungen Fügeverhalten gekröpfter Schnapphaken

 Optimierte Fügegeometrie: Praktisch konstanter Fügewinkel bewirkt Fügekraftreduktion um 70 bis 75 %







$$\eta_2 = \frac{\mu_0 + \tan(\alpha_2 - \varphi_2)}{1 - \mu_0 \cdot \tan(\alpha_2 - \varphi_2)}$$



5. Schnappverbindungen Fügeverhalten gekröpfter Schnapphaken

L-förmig gekröpfte Schnapphaken:

Auslenkkraft, mit dem Satz von Castigliano

 $F = \frac{12 \cdot E \cdot I \cdot f_F}{4 \cdot l_F^{3} + 3 \cdot r_3 \cdot (2 \cdot \pi \cdot l_F^{2} + \pi \cdot r_3^{2} + 8 \cdot r_3 \cdot l_F) + 12 \cdot l_2 \cdot (l_F + r_3)^{2}}$ 

- Fügekraft
  - Theoretisch:  $F_1 = \eta_1 \cdot F$ 
    - Praktisch:  $F_1 \approx \eta_1 \cdot F \cdot \left[ -0.2 \cdot \left(\frac{r_3}{l_1}\right)^{0.7} + 1 \right] \cdot \left[ 10.0 \cdot \left(\frac{l_2}{l_1}\right)^{3.5} + 1 \right]$
- Lösekraft
  - Praktisch:  $F_2 \approx \eta_2 \cdot \sqrt{\cos(\alpha_2)} \cdot F \cdot \left[ -0.2 \cdot \left(\frac{r_3}{l_1}\right)^{0.1} + 1 \right] \cdot \left[ -2.0 \cdot \left(\frac{l_2}{l_1}\right)^{1.5} + 1 \right]$

aktuell in Arbeit (mit Roman Frei)



## 6. Schlussbetrachtungen

- Fazit der letzten 2 Jahre (September 2007 August 2009)
  - 7 abgeschlossene Arbeiten publiziert, 3 Arbeiten vor Publikation
  - Ergebnisse in Projekten mit der Industrie erfolgreich genutzt
- Ausblick
  - pendente Arbeiten abschliessen
  - Ideen und Anregungen für weitere Arbeiten sind vorhanden ...
- Dank
  - der Schulleitung der HSR und der IWK-Institutsleitung f
    ür die F
    örderung des aF+E-Projekts
  - den jungen aktiven und ehemaligen Mitarbeitern des IWK f
    ür die anregende Zusammenarbeit





# Herzlichen Dank für Ihre Aufmerksamkeit ...



Prof. Dipl.-Ing. Johannes Kunz +41 (0)55 222 49 85 jkunz@hsr.ch



EIN INSTITUT DER

HSK HOCHSCHULE FÜR TECHNIK RAPPERSWIL

www.iwk.hsr.ch