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Abstract—The digital signature scheme SPHINCS* is a can-
didate in the NIST post-quantum project, whose aim is to
standardize cryptographic systems that are secure against attacks
originating from both quantum and classical computers. We
present an efficient and, to our knowledge, first hardware
implementation for SPHINCS®. Our systematic approach of
a performance-optimized FPGA architecture results in a 100x
speed-up compared to the reference software-only implementa-
tion. Our investigation on a real-world implementation revealed a
weakness regarding fault injection. The attack breaks the scheme
completely. Collecting enough private information to forge a
signature is a matter of seconds on our setup. We discuss possible
countermeasures. A “’sign-then-verify” operation unfortunately
does not detect a faulty signature, but a full replication of the
hardware might make a detection possible.

Index Terms—SPHINCS®*, post-quantum cryptography, FPGA,
fault attack

I. INTRODUCTION

Large-scale quantum computers might be able one day to
break today’s signature schemes in use (RSA [1] and ECDSA
[2]) by running Shor’s algorithm [3[]. In 2017, NIST started a
standardization process [4] for post-quantum algorithms, i.e.
cryptographic algorithms able to withstand attacks that would
benefit from the processing power of quantum computers.
Proposed algorithms in this process include digital signature
schemes, key exchange mechanisms and asymmetric encryp-
tion. In 2019, 26 of the primary 69 candidates were selected
to move to the second round [5]]. This second round includes 9
signature schemes now, in which only one scheme is following
a hash-based approach, namely SPHINCS* [6], which was
submitted by Andreas Hiilsing et al.

SPHINCS* describes a general signature scheme which can
be combined with an arbitrary hash function. Several param-
eters allow trade-offs between computational effort, signature
size, and security margin. The authors provide six different pa-
rameter sets for security and performance tradeoffs, a ’simple’
and ’robust’ option, and a selection of three hash functions.
This leads to 36 different instances of SPHINCS*. All of
them impress with small key sizes and moderate signature
sizes of 8 to 50kbytes. Hash-based signature schemes can
usually be proved to be secure as long as the underlying
hash function is considered secure [7|]. Therefore, hash-based

signature schemes seem to be a reasonable choice regarding
security compared to other post-quantum signature schemes.
Moreover, in contrast to most other hash-based signature
schemes, SPHINCS™ is a stateless signature scheme, which
makes it a promising replacement candidate for today’s widely
used signature schemes.

A sign of weakness of the SPHINCS' scheme seems to
be its signing time. The SPHINCS® authors report latencies
ranging from 6.5 milliseconds (partly hardware accelerated) up
to a few seconds on a 3.5 GHz processor [[6]. To increase
the throughput of cryptographic algorithms, it is common
practice to use specialized co-processors. To our knowledge,
SPHINCS-256 [8]], the predecessor of SPHINCS?, is the only
stateless hash-based signature scheme on which a hardware-
based accelerator has been reported [9]. A different approach
to speedup SPHINCS-256 signing is to use powerful Graphics
Processing Units and calculate many signatures in parallel
[10]. Another publication [11]] presents a co-processor for the
stateful hash-based signature scheme XMSS [12].

All the above-mentioned publications lack a security anal-
ysis regarding implementation-specific attacks. Active side-
channel attacks (also referred to as fault attacks) try to alter
the processing of an algorithm. Boneh et al. published one of
the first descriptions of such an attack in 1997 [13]]. The goal
is often to either skip a branch or to change the computation
of an algorithm in a way to make it leak private data. A good
overview of different active side-channel attacks can be found
in [14] and [15]], respectively.

The contribution of this paper includes the (according
to our knowledge) first hardware-based implementation of
SPHINCS* including performance results for all SHAKE256-
based variants. In addition, we provide a fault attack on the
proposed hardware architecture and a discussion on coun-
termeasures. We point out that countermeasures within the
algorithm (without special fault detection hardware) might be
quite inefficient.

The paper is structured as follows: In the
SPHINCS* scheme is recalled. Our SPHINCS* FPGA archi-
tecture is described in Details on its performance
are provided in Deep analysis on a successful

active attack on our SPHINCS* implementation is presented

in [Section V1
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II. HASH-BASED SIGNATURES

Using cryptographic hash functions (digest = f(seed)) for
signing is not a new idea at all. As early as 1979, L. Lam-
port, R. C. Merkle, and R. Winternitz introduced hash-based
signature schemes ([16] and [17]). Several improvements to
these basic schemes led to the SPHINCS™* scheme, which we
describe in this section.

A. Winternitz One-Time Signature WOTS

A WOTS key pair can be used to generate exactly one
signature. It allows for a trade-off between signature size and
processing effort by the Winternitz parameter w. The WOTS
construction has the advantage that the public key can be
derived from a message and its signature.

An n-bit long message m is split into n/logs(w) sub-
message chunks m;. Each chunk is interpreted as an unsigned
number 0 < m; < w. For all chunks, a private (random) value
x; is required. To create the signature of one chunk o;, the
hash function is applied m; times on the corresponding private
value o; = h™i(x;). An example with w = 4 is illustrated in
Figure
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Fig. 1. WOTS construction with Winternitz parameter w = 4 signs 2 bits
per value o;.

Because o; is public, anyone could create a signature for any
sub-message between m,; and w— 1. This issue is addressed by
an additional checksum, which is signed in the same manner
as the message itself. The checksum is the number of sub-
messages times w — 1 minus the sum of all sub-message
chunks. This prevents anyone to create a second valid signature
if any message bit is changed.

To derive the public key from the private key, the hash
function is applied w — 1 times on all private values y; =
h*=Y(z;). By applying the hash function w — m; — 1 times
on a signature value, the public key can be derived from a
signature and the corresponding message: y; = h“~™i~1(qg;).

Later improvements replaced the pure hash function by
a chain function [18]. A pseudo-random value (mask) with
length n is logical-XOR linked with the hash input to suppress
collision-resistance requirements of the underlying hash func-
tion [19]. This one-time signature construction is referenced
to as WOTS™.

The downside of both WOTS and WOTS™ is that if two
different messages are signed using the same key pair, its
security is broken [20].

B. Merkle Tree

A useful structure to arrange keys efficiently is the Merkle
tree. 2¢ WOTS* key pairs are merged in a balanced binary tree
of depth d. The tree leaves IV, o are derived from the WOTS*
public key by applying the hash function N;o = h(Y;),
where Y; is the concatenation of all WOTS™ public values.
The tree nodes NN, ; are digests of its concatenated child
nodes (a pair of neighbor leaves or inner nodes) N;; =
h(N2; j—1||N2i+1,j-1). The public key of all 2¢ signatures is
represented by the root node Ny 4. A signature itself contains
a leaf index 0 < ¢ < 2%, the WOTS* signature o;, and
the authentication path. The latter includes all required tree
nodes which verifiers need to calculate the public key Ny 4
by themselves.

To verify the signature, Y; and its signature o; are derived
from the message. Then, leaf V; o is generated using Y;. Using
N;o and the authentication path, the verifier is then able to
calculate the root. If the result matches the signer’s public key
(No,2), the signature is valid.

A Merkle-tree improvement that significantly decreased the
private key size was proposed by Buchmann et al. in [21].
Instead of storing all private values x; ;, only a single seed
is used. All private values are derived from this seed using
a pseudo-random function. Fractal trees [22|] are a further
improvement. If a Merkle tree is large, key generation is very
expensive in processing effort. All leaves and nodes must be
calculated to get the public key (i.e. the tree root). A fractal
tree (also referred to as hypertree) cuts this huge Merkle tree
into several sub-trees. The lowermost Merkle tree is used to
sign the message, and all upper sub-trees are used to sign the
lower sub-tree roots.

All mentioned improvements lead to the extended Merkle
signature scheme (XMSS) [12], which is a state-based con-
struction. Because the same WOTS* private key must not be
used twice, the signer must keep track of the state under all
circumstances. The state consists of a scratch list of all used
WOTS* keys. Depending on the system, this requirement may
be hard to reach: Imagine, for instance, system crashes, resets,
or parallelization setups (i.e., different devices using the same
private key).

C. Forest of Random Subsets FORS

In principle, FORS [6]] is a variant of Lamport’s one-time
signature (OTS) [16], but with a large security margin. This
margin ensures that the same FORS key pair can be used to
sign a few different messages. This security margin is paid for
with a larger signature size and increased processing time.

FORS uses two parameters, £ and t = 2%, to sign bit
strings of length %k - a. FORS needs k - ¢ private values of
length n, which are grouped into % sets. Each set contains
t private values. To get the public values, a hash function
is applied to all private values. Each set of public values is
filled in a binary hash tree of depth a. This way, the public
values are compressed into k root values. These root values
are further compressed into a single FORS public key of size
n by applying the hash function to all concatenated root nodes.



Signing starts with calculating the message digest, which
is cut into k bit strings of size a. These bit strings are
interpreted as unsigned integer numbers. Each number is an
index corresponding to a private value in one of the k sets.
These private values and the corresponding authentication
paths are put into the signature. In total, the FORS signature
consists of k private values and k-a authentication path nodes.
All these values have size n, which corresponds to the security
level (under the condition that a - k > n).

Public key generation comes almost for free during signing,
because all k& FORS trees are evaluated anyway. A verifier
calculates the k - a private value indices by applying the hash
function on the message. Then, the ¥ FORS root nodes are
derived from the k private values and its authentication paths.
As during key generation, the verifier calculates the FORS
public key by applying the hash function to all concatenated
root nodes.

D. SPHINCS*

SPHINCS* finally is a combination of FORS and a large
fractal Merkle tree of size h, split in h/d subtrees.
shows the whole structure. A SPHINCS™ private key is essen-
tially SK.seed, a seed of length n (generated as true random
as possible) which is used to derive all private values. A
SPHINCS* public key is basically PK.root, the root node
of the highest WOTS* s p¢rce-

Signing starts by selecting a (pseudo-) random start address
(2" choices). This address selects the FORS key pair, which is
used to sign the message digest. The public key of the selected
FORS key pair is signed with the fractal Merkle tree. The
size of 2" (in the order of 20%) ensures that the probability
to choose the same start address many times is very low.
In combination with the fact that using the same FORS key
(i.e. choosing the same start address) a few times only does
not harm, a signer does not have to keep track of previously
selected start addresses. This fact qualifies for “statelessness”.

The price for statelessness is increased processing effort and
larger signature size. A full FORS signature and h/d WOTS*-
based Merkle trees must be evaluated to sign one message.
Signing requires (depending on parameters) up to ten million
hash function calls. The time necessary for one hash function
evaluation is therefore a major criterion of the SPHINCS*
processing speed. The use of the following three different
hash functions is proposed in the SPHINCS* paper [6]: SHA-
256 (SHA-2), SHAKE256 (SHA-3) and Haraka. Both SHA-2
and SHA-3 have the advantage of being NIST approved and
enjoy high user confidence. Haraka is chosen because it can
be sped up in case of having an AES-accelerator available.
Beside the different parameter sets and hash functions, a
robust version with masks and a simple version without masks
exist. In the following, we focus on the 12 SHAKE256-
based SPHINCS™* versions defined by six parameter sets (with
differing computational effort, signature size, and security
margin), each of which in a simple and robust version.

\ WOTS*,.,,; top layer = PK.root
ANWOTS* suptree layer h/d — 1

Public

Secret

Signature

Fig. 2. A SPHINCS™ signature consists of a FORS signature (which signs
the message) and several WOTS™ signatures and authentication paths (which
sign the FORS public key).

III. FPGA IMPLEMENTATION

This section describes our FPGA-based hardware architec-
ture for the SPHINCS* scheme. It follows similar design
philosophies as in our previous SPHINCS-256 implemen-
tation, which we described in [9)]. In the first subsection,
similarities are summarized and the differences are clarified.
The second subsection describes the top-level architecture
and important sub-blocks. The section is completed with an
analysis of the SPHINCS* performance, which is compared
to software-based SPHINCS* and FPGA implementations of
other post-quantum signature schemes.

A. From SPHINCS-256 to SPHINCS*

The SPHINCS-256 FPGA architecture [[9] consists of five
main blocks: A control unit generates one internal instruction
per clock. A fully unrolled hash core (fast, but large) computes
one ChaChal2 hash result per clock cycle (ChaChal2 and
TChaCha are primary hash functions in SPHINCS-256). A sec-
ond iterative hash core (small, but slower) computes BLAKE-
256 (only a small number of BLAKE-256 evaluations are
required to generate a signature in SPHINCS-256). A memory
block accessible from the trusted host contains the signature
and keys (including static masks). A second memory block is
used to buffer intermediate results such as tree nodes.



The main concept of computing one internal instruction per
clock cycle has been kept. Also, the structure with a control
unit generating internal instructions, two memory blocks, and
a fully unrolled pipeline computing the hash function has
remained. However, the algorithmic changes from SPHINCS-
256 to SPHINCS* required some adjustments in the hardware
architecture.

All parts in the SPHINCS* algorithm use the same hash
function, in our case SHAKE256. Therefore, the ChaChal2
block has been replaced by the SHAKE256 block, and the sec-
ond hash block in the SPHINCS-256 core (BLAKE-256) has
been eliminated. A second notable difference is the way how
masks are used. SPHINCS-256 uses level-based masks stored
in the keys, whereas SPHINCS™*-robust derives the masks from
the public seed and an address. This approach significantly
reduces key sizes. A mask is calculated by an additional
SHAKEZ256 evaluation. Because the individual mask is a part
of the SHAKE256 block input, the mask must be calculated
beforehand. To avoid pipeline stalls, masks are calculated in
batches and buffered in memory. The buffer is realized in a
first-in-first-out (FIFO) fashion. Since SPHINCS*-simple does
not use masks at all, the mask FIFO is not used for these
instances. A third notable difference concerns the way how
the start address is picked. Whereas the SPHINCS-256 FPGA
architecture leaves this part as well as the hashing of the
message to the host, our new SPHINCS™* implementation takes
care of both.

B. SPHINCS* Architectural and Design Decisions

The resulting SPHINCS* co-processor is pictured in
The architecture includes:

Control unit A state machine in charge of generating inter-

nal instructions

SHAKE256 A pipelined SHAKE256 hash value calculator

I/O RAM  Key and signature memory

Cache RAM Memory for intermediate results

Mask FIFO Buffer for masks (SPHINCS*-robust only)

Start Addr

Control unit

= |

N s
Addr Instruction, L Addr
Hash Addr
1/0 n Data Copy Cache
RAM RAM
) n
2n
( 2n 1 l
Mask
. FIFO SHAKE256 } n
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Fig. 3. SPHINCS* co-processor architecture. Depending on the instance, n
is either 128, 196, or 256.

Both RAM blocks are instantiated as simple dual-port
RAMs using the block RAM (BRAM) available in the FPGA

device. The I/O RAM contains an additional switch (mux) to
enable both internal and external read and write. The I/O RAM
contains 2048 words and the cache RAM 1024 words of size
n (= 128, 192, or 256).

The control unit consists of several interdependent finite
state machines (FSM). All SPHINCS™ algorithms are modeled
in VHDL. This includes the computation of address indices
(which are part of the SHAKE256 input) and read and write
addresses for RAMs. The main control unit is designed to
create one internal instruction per clock cycle. Most internal
instructions are then processed in three steps: Read input data
from RAM, execute SHAKE256, and store the output data
into RAM.

Because the main difference between the SPHINCS* and
SPHINCS-256 architecture lies in the choice of the hash
function, the SHAKE256 core is described in more detail in
the following sections.

C. SHAKE256 Core

SHAKE?256 is part of the SHA-3 NIST standard [23]]. As an
extendable output function (XOF), it acts like a hash function
with arbitrary output length. The core of all SHA-3 functions
is the 1600-bit wide KECCAK permutation, which is called 24
times during the execution of SHAKE256.

Several FPGA-based SHA-3 implementations with different
design goals are reported in the literature. The main difference
is the target throughput resulting in a specific amount of
required resources. Reported throughput-area trade-offs are
categorized in [24]]. The groups comprise:

Basic This category covers straightforward implemen-
tations where one round per clock cycle is com-
puted.

Folded  The round computation is divided into several

clock cycles while processing a piece of the state
every clock cycle. This technique enables the
most compact implementations.
Pipelined The parallel round computation is split into mul-
tiple clock cycles to enable higher clock frequen-
cies. This allows to process multiple messages
simultaneously.
Several round pipelines are instantiated and con-
nected serially. This technique allows for the
highest throughput.

The SHAKE?256 throughput is crucial for the overall per-
formance of the SPHINCS* core. Therefore, an unrolled
structure fits best. The KECCAK round computation itself is
implemented in the following pipeline structure:

01, Five 64-bit intermediate values are calculated by apply-

ing & (XOR) to five words of the KECCAK state each.
This requires 1,600+ 320 flip-flops (FFs) and 320 5-
input lookup tables (LUTSs).

05> The second part of # includes a one-bit rotation (comes

for free in the pipeline as it is fully integrated into the
routing) and the application of @ twice on all 1,600
state bits using the five intermediate values. This part
requires 1,600 3-input LUTs and 1,600 FFs.

Unrolled
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Fig. 4. The KECCAK pipeline runs at double clock speed and is executed twice per hash computation. That way, the pipeline depth is reduced from 24 to

12 rounds of KECCAK, saving almost 50 % of FPGA resources.

pm The cyclic rotating (p) and internal state reordering (7)

comes for free as they are absorbed into the routing.

x¢ To perform x, all 1,600 state bits are computed by a

three-input Boolean function. The final ¢ step modifies
one state word by applying @ with a round constant
(e.g. a 64-bit value depending on the round index ;).
The third pipeline stage consumes 1,600 3-input LUTs
and 1,600 FFs.

To fully unroll SHAKE256, the round pipeline must be
instantiated 24 times. This design choice would require a
massive amount of FPGA resources. As a trade-off between
area and throughput, the unrolling factor is cut in half, from
24 down to 12. That way, each KECCAK permutation runs
through the 12-round long pipeline twice. The pipeline re-
entry requires an additional 2-input mux to switch the pipeline
input every clock cycle between a new input and the current
pipeline output. The structure is visualized in The
resulting KECCAK permutation pipeline is able to process a
message on every other clock cycle. A single permutation has
a delay of 72 clock cycles while 36 different permutations can
be evaluated in parallel.

Our SPHINCS* architecture is designed to handle one
hash input and output on every clock cycle. Therefore, the
clock within the KECCAK pipeline has been chosen to run
at double speed compared to the rest of the core. Because
the KECCAK clock frequency is an integer multiple (factor 2)
of the main clock frequency, clock domain crossing can be
achieved synchronously.

The SHAKE256 core is built around the KECCAK pipeline.
It contains some logic for input formatting and needs to
handle cases when the KECCAK permutation is called multiple
times. This happens whenever either the input or the output is
larger than the SHAKE rate of 1088 bits (136 bytes). During
SPHINCS"* signing and verification, this happens for instance
when the 67 WOTS* public key values are compressed into a
single tree leaf.

IV. RESULT ANALYSIS

All proposed SHAKE256-based SPHINCS™* instances have
been implemented in 7-series Xilinx FPGAs. All presented
results were obtained after place-and-route using the Xilinx
Vivado 2018.2 tool with fully closed timing. The correct

functionality was verified by execution on a KC705 evaluation
board. This board is populated with the Kintex-7 XC7K325T-
2 FPGA device. On this device, the main clock frequency
is 300MHz, and the KECCAK permutation clock runs at
600 MHz. Because NIST recommends Artix-7 to report the
performance of algorithms in the post-quantum standardization
process, detailed results are also reported for the Artix-7 device
XC7A100T-3. On this device, the main clock runs at 250 MHz
and the KECCAK permutation at 500 MHz.

The main part of the SPHINCS* FPGA implementation
consists of the SHAKE256 core. Therefore, its performance
is reported and compared to other implementations separately
in the first part of this section. The performance results of the
full core are listed in the second part of this section.

A. SHA-3 Core Performance

The SHAKE256 core including input and output formatting,
flow control, and clock domain crossing roughly includes
45,500LUTs and 70,000 FFs. Our SHAKE256 core runs at
a 250MHz clock (internal KECCAK permutation runs at
500 MHz) on the Artix-7 device and is able to compute one
result per clock cycle. In the single-block message case, where
both the message and output data sizes are less than 1,088 bits,
the throughput reaches 250 MHz - 1,088 bits = 272 Gbps.
The latency of a single message adds up to 41 clock cycles
or 164ns. The often-used throughput/area metric results in
roughly 19 Mbps/slice. The performance is summarized in

(Table 1

TABLE I
PERFORMANCE RESULTS FOR SHA-3 KECCAK

Ref, device Area Frequency TP TP/Area
slices MHz Gbps | Mbps/slice
[25] Virtex-6 91 311 0.2 2.23
[26] Virtex-7 1,618 434 20.8 12.9
This, Artix-7 14,354 250 & 500 272 18.9
This, Kintex-7 | 15,049 300 & 600 326 21.7

The highest throughput/area metric we found in the open
literature is 12.9 Mbps/slice for a Virtex-7 device [26].
Even though we use a slower FPGA, our highly pipelined
SHAKE256 implementation is almost 70 % more efficient



TABLE 11
SPHINCS*-SHAKE256 PERFORMANCE (FOR ARTIX-7 XC7A100T-3 FPGA) COMPARED TO OTHER FPGA IMPLEMENTATIONS

Scheme, reference Device NIST Sec. | Signature Area felock tsign  Gerify | Power  Eggn  Everify
Level kbyte LUT FF BRAM DSP MHz ms ms w mWs mWs

SPHINCS*-128s-simple Artix-7 1 8.1 48,231 72,514 115 0 | 250 & 500|124 0.07 | 9.71 120 0.7
SPHINCS*-128s-robust Artix-7 1 8.1 49,146 73,069  15.5 0 |[250 & 500 |21.1 O.11 | 987 208 1.1
SPHINCS*-128f-simple Artix-7 1 17 47,991 72,505 115 1 | 250 & 500|101 0.16 | 9.76 9.9 1.5
SPHINCS™*-128f-robust Artix-7 1 17 48,930 73,002 155 1 |250& 500 | 1.64 023 | 994 163 23
SPHINCS*-192s-simple Artix-7 3 17.1 48,725 72,514 17 0 | 250 & 500|214 0.10 | 9.81 210 1.0
SPHINCS*-192s-robust Artix-7 3 17.1 50,064 74,462 225 0 | 250 & 500|383 0.15] 993 380 1.5
SPHINCS*-192f-simple Artix-7 3 35.7 48,398 73,476 17 1 250 & 500 | 1.17 0.19 | 9.69 114 1.8
SPHINCS*-192f-robust Artix-7 3 35.7 47,227 74279 225 1 | 250 & 500|212 0.31 102 21.7 3.1
SPHINCS*-256s-simple Artix-7 5 29.8 51,130 74,576 22.5 1 |250 & 500|193 0.14 | 9.75 188 1.3
SPHINCS™*-256s-robust Artix-7 5 29.8 50,070 75,738 30 1 250 & 500 | 36.1 0.20 | 10.3 373 2.1
SPHINCS*-256f-simple Artix-7 5 49.2 51,009 74,539 225 1 250 & 500 | 2.52 021 | 980 247 20
SPHINCS*-256f-robust Artix-7 5 49.2 50,341 75,664 30 1 |250 & 500|468 034 | 102 477 34
SPHINCS-256 [9] Kintex-7 * 41 19,067 38,132 36 3 525 1.53 0.07 | 497 7.6 0.5
XMSS-216 SHA-256 [11] | Cyclone V * 2.7 6,500 9,540 145 0 93.1 9.95 5.80 Not provided
Picnic-L1-FS [27] Kintex-7 1 34 90,037 23,105 525 0 125 025 024 Not provided
Picnic-L5-FS [27] Kintex-7 5 133 167,530 33,164 985 0 125 .24 1.17 Not provided
qTESLA-p-1 28] Artix-7 1 2.6 Inconclusive, ca. 2440 slices 121 344 7.8 Not provided
qTESLA-p-IIT [28] Artix-7 3 5.7 Inconclusive, ca. 2470 slices 121 63.9 19.1 Not provided

*Security level not defined, because signature scheme is not in NIST post-quantum standardization process.

than the SHA3-224 implementation in [26]]. This improvement
stems from the higher clock frequency (three pipeline stages
per round instead of two) and the comparatively reduced
amount of multiplexers (gained by unrolling).

Compact, folded FPGA implementations of the KECCAK
permutation have often throughputs up to a few hundred
Mbps. Such an implementation is reported in [25] and requires
359LUTs and 107 FFs. The architecture attains a throughput
of 203Mbps on a Virtex-6 FPGA and the throughput/area
metric is reported to be 2.23 Mbps/slice.

B. SPHINCS* Core Performance

All measured times for signing and signature verification
and the required FPGA resources are summarized in
Additionally, the results are visualized in In all
SPHINCS" instances, the critical elements are LUTs (i.e.
highest utilization of available resources within the FPGA).

Although the key generation algorithm is not directly imple-
mented, the SPHINCS* co-processor can be used to accelerate
the key generation. It requires random data to generate the
seeds (SK.prf, SK.seed, and PK.seed), followed by the
computation of the top-most WOTS™ subtree to get the public
root (PK.root). This root calculation comes for free during
signing. If random data is available, the signing function can
be called to get the public root (signature data is ignored).

Compared to the SPHINCS-256 implementation [9], the
SPHINCS* core needs twice the amount of FFs and 2.5 times
more LUTSs. This originates primarily from the hash function.

Without the SHAKE256 block, our implementation occupies
(depending on the instantiation) 3,000 to 6,000 LUTs. The
SPHINCS-256 core from [9] needs ~5,000LUTs without
hash blocks (ChaChal2 and BLAKE-256). Besides the area
requirement, our SPHINCS* implementation is also slower:
The clock speed is 2.1 times lower in the SPHINCS* co-
processor. The SPHINCS™* co-processor’s main clock runs with
250 MHz, while the SPHINCS-256 core runs at 525 MHz.

Compared to the software-based SPHINCS*-SHAKE256
benchmark reported in [6], our SPHINCS* core achieves
a speed-up factor in signing of around 100 compared to
the reference implementation running on a 3.5 GHz Intel i7
processor. Compared to the optimized implementation using
AVX2 instructions, our core is around 50 times faster in
signing. If SPHINCS*-Haraka with a hardware accelerator
for Haraka is taken into account, our SPHINCS* core is still
around 8 times faster. The corresponding factors for verifying
are 50, 25, and 3, respectively.

Additional FPGA implementations have been reported for
state-based signature schemes. An interesting design is de-
scribed in [11], where an XMSS [12]] hardware accelerator
is integrated in a RISC-V processor. The SHA-256 XMSS
version with h = 16 (enables 2'® signatures) occupies
6,500 ALMs (8-input LUTs), 9,540 FFs, 145 BRAMs and at-
tains 9.95ms (average for the first 16 signatures), 5.8 ms to
verify, and 3.44s for key generation. If the high amount of
BRAMSs in [[11] is omitted, our SPHINCS™ core would require
roughly seven times more resources. All SPHINCS™* instances
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Fig. 5. The proposed FPGA-based SPHINCS™* co-processor implemented on Artix-7 compared to the processor-based implementation from [0].

are ten times faster in verification and more than 100 times
faster for key generation. Signing delay of the SPHINCS*
core depends on the instance, while the XMSS signing delay
even fluctuates depending on the processed key-pair number.
However, with roughly 10 ms, the signing delays of both
implementations are in the same ballpark.

FPGA implementations for Picnic, a signature scheme cur-
rently in NIST post-quantum standardization, are described
in [27]]. Our SPHINCS™*-256f-simple implementation requires
only one third of the FPGA resources than the Picnic level 5
implementation reported in [27]. Although the Picnic imple-
mentation attains half the signing time, the delay-times-area
product is 50% higher than our SPHINCS*-256f-simple imple-
mentation. Concerning signature verification, our SPHINCS™*-
256f-simple implementation is 25 times more efficient in the
delay-times-area metric.

Another signature scheme currently being reviewed by
NIST is qTESLA. A hardware-software co-design imple-
mentation for qTESLA is reported in [28]]. The architecture
consists of a RISC-V processor with additional hardware-
accelerated instructions. Although the required FPGA re-
sources are provided for the individual hardware instructions,
the required area of the full qTESLA architecture, including
RISC-V processor and associated memory, is not reported.
However, compared to the qTESLA-p-I implementation de-
scribed in [28]], our SPHINCS™*-128s-simple implementation is
three times faster in signing and 100 times faster in signature
verification.

V. FAULT ATTACK

Recent publications show that SPHINCS* and other multi-
tree-like hash-based signature schemes are susceptible to a
fault attack. The attack was proposed by Castelnovi et al. in
[29] and practically applied on an Arduino board by Genét
et al. [30]. So far, the attack has been applied on software
implementations only. In this section, we present the first fault
attack on a hardware implementation.

A. Attack Description

The fault attack is most effective if the start address (i.e.
the FORS key pair selection) can somehow be controlled.
The prerequisite is that the authentication path is partly shared
for several signatures. This requirement is not mandatory for
success, it just accelerates the attack. An attacker without in-
fluence on the signed message can utilize the attack anyway. In
this case, the attacker just has to wait until enough signatures
are created with the same authentication path in the topmost
WOTS*upiree (this happens in average at every 64™ signature
for SPHINCS*-256s).

For simplicity, let us assume that the same message is signed
multiple times and the optional random input is switched
off. The SPHINCS* algorithm will produce exactly the same
signature on every call. The topmost WOTS* signature at layer
h/d — 1 signs the WOTS* g ptrce root node of layer h/d — 2.
This WOTS* signature releases some private nodes of its
private key. The released information cannot be utilized to sign
another message. If an attacker manages to change the value
of the WOTS™ sptrce root node at layer h/d — 2, the WOTS*
private key at layer h/d — 1 is used to sign this tampered root
node. The resulting signature releases then some additional
private key nodes. The attack is visualized in

One correct and one tampered SPHINCS™ signature with a
partly identical authentication path leave a complexity of 234
hash function computations to forge a signature [20]. However,
the attacker can repeat the attack until he recovers the full
private key of WOTS* at layer h/d — 1. A detailed analysis
on the security margin depending on the number of faulty
signatures is presented in [20].

To apply the attack, an attacker must be able to provoke
a random fault during WOTS* public key calculations. To
accurately time the fault attack, a passive side-channel attack
can be applied. An attacker could also use a try-and-error
approach because the timing is not tight. As long as any of
the WOTS™* public keys at layer h/d — 2 has a flipped bit, the
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Fig. 6. A fault during WOTS™" ;,p¢r-ce calculations leads to a different root
node value. This wrong root node is signed with the next level of WOTS* and
leaking therefore some private values of the corresponding WOTS™ private
key.

attack will work. The example in shows the effect of
a faulty WOTS™ public key. Not only the root node but also
one node in the authentication path (part of the SPHINCS*
signature) has an altered value. Because the change in the root
node is a function of the changed node in the authentication
path, the exact same change in the root node results when the
verification algorithm is called. This leads to the behavior that
the SPHINCS™ signature remains valid even if a fault has been
injected.

These circumstances make the fault attack very powerful. A
random single bit flip is sufficient to break the scheme. If the
fault attack is correctly timed, the faulty SPHINCS* signature
is still valid. A sign-then-verify function does therefore not
detect a successful fault attack.

B. Attacking the FPGA Implementation

To apply the attack, we must be able to inject faults
into the FPGA. One approach is to add variations to the
power supply. A reduced supply voltage causes internal digital
circuits to have larger gate delays [31]], which may lead to
timing violations. This violation can provoke a computation
error. Injecting a fault into an FPGA by temporarily decreasing
the voltage has already been exploited in [32] and [33]].

By applying supply-voltage glitches, an attack against the
SPHINCS* scheme described above was successfully per-
formed on our FPGA implementation.

The number of faulty signatures required to get the entire
WOTS™ private key is shown in The theoretical
expected value of the number of needed signatures (E(X) =~
74.5 [29]) is consistent with our measurement (E(X) ~ 74).
With our attack setup, it is possible to obtain the entire WOTS™*
private key in about 70 seconds.
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|
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Fig. 7. Required number of faulty signatures to retrieve the whole WOTS*
private key.

C. Countermeasures

Detecting faults in Merkle trees is an ongoing research
challenge. Genét et al. [30] propose a caching mechanism.
Their approach is able to protect stateful schemes, but it is not
fully applicable to stateless schemes such as SPHINCS*. Ker-
mani et al. [34] propose to detect fault attacks by calculating
parts of the hypertree a second time with swapped processing
order. This could be applied to our SPHINCS* core, but the
signing time would increase due to the sequentially executed,
redundant calculations.

Hardware implementations allow us to use protection tech-
niques that are not available to software implementations.
Instead of protecting the SPHINCS* core, a dedicated fault-
attack detection logic could be implemented. An FPGA-based
fault-attack detection sensor is presented in [35]]. Such fault-
detection circuits are reported to be efficient with respect to
resource overhead and are reliable in fault detection of all
known fault attacks. This approach may be the best choice
for a specific instantiation. However, we are looking for a
protected SPHINCS™ implementation that does not depend on
extra detection circuits.

The simplest attempt to detect faults is to duplicate parts of
the SPHINCS* core and compare the outputs of both dupli-
cated blocks. If only the SHAKE core is instantiated twice,
20 % fault coverage is reached in our setup (concerning supply
voltage glitches). Duplicating other blocks, such as RAMs or
the control unit, does not provide notable fault coverage. Only
if the full SPHINCS™ co-processor is instantiated twice, full
fault coverage is reached. Although both cores are functionally
identical, they differ in their electrical characteristics. Both
cores are placed and routed in different regions within the
FPGA. A supply-voltage glitch attack will most probably
affect both cores, but it is highly unlikely that exactly the
same bit-flip will occur. By delaying one of the cores by
a few clock cycles, it is even more difficult for an attacker
to provoke the same processing error on both cores. This
successful countermeasure comes at the price of doubling the
required resources in the FPGA.

VI. CONCLUSIONS

We presented the first hardware implementation of the
signature scheme SPHINCS*-SHAKE256 as described in the
documents of the NIST post-quantum competition. The im-
plementation needs roughly 50,000 LUTs and 75,000 FFs on



a 7-series FPGA from Xilinx. Key generation and signing
takes 1 ms for the (fastest) variant SPHINCS*-128f-simple,
and 38.3 ms for the (slowest) variant SPHINCS™*-192s-robust.
Verification takes between 0.07 ms and 0.34 ms. Experiments
with supply voltage glitches have revealed that an FPGA
implementation of the SPHINCS™ scheme is prone to a fault
attack. With a glitch attack, collecting private information
to forge a signature is a matter of seconds. A successful
countermeasure consists in doubling the entire SPHINCS* co-
processor.
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