
ARCHITEKTURENTSCHEIDUNGEN
IM WORKFLOW-DESIGN

Prof. Dr. Olaf Zimmermann
Distinguished (Chief/Lead) IT Architect, The Open Group
ozimmerm@hsr.ch
Leipzig, 20. November 2014

Institut für Software

Softwareforen Leipzig, Arbeitsgruppe Softwarearchitekturen
8. Arbeitstreffen:
«Softwarearchitekturen für Workflow-Management»

Aufbau und Inhalte dieser Session

 Gliederung in drei Einheiten (Abschnitte):
 Vortrag, moderierte Gruppenarbeit, Reflektion und Ausblick

 Vortragsthemen:
 Motivation: Architekturentscheidungen in einer Fallstudie aus der Praxis

(Order Management)
 Konzeptionelle Workflow-Designentscheidungen:
 Wahl von Patterns, Schichtenbildung, Schnittstellenfragen

 Technische und organisatorische Architekturentscheidungen:
 Buy vs. Build, Protokolle und Sprachen, Transaktionsgrenzen

 Leichtgewichtige Templates zur Entscheidungsdokumentation und
Werkzeugunterstützung

 Gruppenarbeit:
 Ihre Architekturentscheidungen (aus Workflow-Projekten)

© Olaf Zimmermann, 2014.
Page 2

Who am I?

 Research & Development und Professional Services ab 1994
 em. IBM Executive IT Architect (& certified by The Open Group)
 Systems & Network Management, J2EE, Enterprise Application Integration/SOA

 em. ABB Senior Principal Scientist
 Enterprise Architecture Management/Legacy System Modernization/Remoting

 Auswahl Industrieprojekte und Coachings
 Produktentwicklung und IT Consulting für Middleware, SOA,

Informationssysteme (Banken IT, Telekommunikationsbranche), SE-Tools
 Tutorials: UNIX/RDBMS, OOP/C++/J2EE, MDSE/MDA, Web Services/XML

 Schwerpunkt @ HSR FHO: Entwurf verteilter Systeme
 Cloud Computing, Web Application Development & Integration (Runtime)
 Modellgetriebene Entwicklung, Architekturentscheidungen (Build Time)

© Olaf Zimmermann, 2014.
Page 3

What is SOA?

Page 4
© Olaf Zimmermann, 2014.

No single definition – “SOA is different things to different people”

 A set of services that a business wants to expose to their

customers and partners, or other portions of the organization.

 An architectural style which requires a service provider, a service
requestor (consumer) and a service contract (a.k.a. client/server).

 A set of architectural patterns such as enterprise service bus,
service composition, and service registry, promoting principles
such as modularity, layering, and loose coupling to achieve design
goals such as separation of concerns, reuse, and flexibility.

 A programming and deployment model realized by standards,
tools and technologies such as Web services and Service
Component Architecture (SCA).

Business
Domain
Analyst

IT
Architect

Developer,
Administrator

Reference: Adapted from IBM SSS
(SOA Reference Architecture)

Partitioning into Components and Services (SOA Example)

Page 5
© Olaf Zimmermann, 2014.

Logic

Data

On which tier
should
existing
 and new

applications be
integrated?

Traditional

Applications

SOA

Services

Basket of Services Discrete Applications
(Two or Three Tiers) Layering based on IBM SOA reference architecture

Example:
An insurance company uses three SAP R/3, MS Visual Basic, and COBOL applications to manage customer
information, check for fraud, and calculate payments. The user interfaces (UIs) are the only access points.

A multi-step, multi-user business process for claim handling, executing in IBM WebSphere, is supposed to
reuse the functions in the existing applications. How to integrate the new business process with the three
legacy applications in a flexible, secure, and reliable way?

Users

UI

Reference: O. Zimmermann, SOA and Web
Services Tutorials, OOPSLA 2005 - 2008

Workflow Management – Essentials

 Workflow and service composition form upper part of business logic
layer (domain layer) in layered enterprise application
 Programming in the large vs. programming in the small
 Workflow not to be confused with integration flows and or HTML page flows

 Fundamental workflow concepts
 Process instance, process variables
 Control flow vs. data flow
 Human tasks, staff assignments

 Key BPMN constructs
 Start, stop events
 Tasks (human user, service)
 Gateways
 Pools and lanes
 Transactions and compensation

© Olaf Zimmermann, 2014.
Page 6

What?

Who?
With?

Telco Case Study (with selected Architectural Decisions)

© Olaf Zimmermann, 2014.
Page 7

Reference: IBM,
ECOWS 2007

What are Architectural Decisions (ADs)? Why Care?

 “The design decisions that are costly to change” (Grady Booch, 2009)

 A more elaborate definition:

“Architectural decisions capture key design issues and the rationale behind chosen
solutions. They are conscious design decisions concerning a software-intensive

system as a whole or one or more of its core components and connectors in any given
view. The outcome of architectural decisions influences the system’s nonfunctional

characteristics including its software quality attributes.”

 From IBM UMF work product description ART 0513 (since 1998):
“The purpose of the Architectural Decisions work product is to:
 Provide a single place to find important architectural decisions
 Make explicit the rationale and justification of architectural decisions
 Preserve design integrity in the provision of functionality and its allocation to

system components
 Ensure that the architecture is extensible and can support an evolving system
 Provide a reference of documented decisions for new people who join the project
 Avoid unnecessary reconsideration of the same issues”

© Olaf Zimmermann, 2014.
Page 8

Reference:: IBM, SATURN
2010

 IEC/IEEE/ISO 42010:2011 standard for architecture description
 Rationale as first class entity in architecture documentation

 Active research community investigating architectural decisions
 E.g. SOAD project: active, guiding role for recurring architectural decisions

 See SEI SATURN 2013 BoD session report regarding state of the art

From ADs to Architectural Knowledge Management (AKM)

© Olaf Zimmermann, 2014.
Page 9

Reference: http://enterprise-strategy-architecture.blogspot.ch/2011/11/understanding-isoiecieee-420102011.html

http://en.wikipedia.org/wiki/ISO/IEC_42010
http://soadecisions.org/soad.htm
http://www.sei.cmu.edu/library/assets/presentations/zimmermann-saturn2013.pdf
http://enterprise-strategy-architecture.blogspot.ch/2011/11/understanding-isoiecieee-420102011.html
http://enterprise-strategy-architecture.blogspot.ch/2011/11/understanding-isoiecieee-420102011.html
http://enterprise-strategy-architecture.blogspot.ch/2011/11/understanding-isoiecieee-420102011.html
http://enterprise-strategy-architecture.blogspot.ch/2011/11/understanding-isoiecieee-420102011.html
http://enterprise-strategy-architecture.blogspot.ch/2011/11/understanding-isoiecieee-420102011.html
http://enterprise-strategy-architecture.blogspot.ch/2011/11/understanding-isoiecieee-420102011.html
http://enterprise-strategy-architecture.blogspot.ch/2011/11/understanding-isoiecieee-420102011.html
http://enterprise-strategy-architecture.blogspot.ch/2011/11/understanding-isoiecieee-420102011.html
http://enterprise-strategy-architecture.blogspot.ch/2011/11/understanding-isoiecieee-420102011.html
http://enterprise-strategy-architecture.blogspot.ch/2011/11/understanding-isoiecieee-420102011.html
http://enterprise-strategy-architecture.blogspot.ch/2011/11/understanding-isoiecieee-420102011.html

AD Capture for Documentation Purposes (in Enterprise Architect)

Page 10
© Olaf Zimmermann, 2014.

Reference: ABB, SATURN
2012

AD about Integration Style (IBM UMF Template for Decision Log)

Subject Area Process and service layer design Topic Integration

Name Integration Style AD ID 2

Decision Made We decided for RPC and the Messaging pattern (Enterprise Integration Patterns)

Issue or Problem How should process activities and underlying services communicate?

Assumptions Process model and NFRs/QA requirements are valid and stable

Motivation If logical layers are physically distributed, they must be integrated.

Alternatives File transfer, shared database, no physical distribution (local calls)

Justification This is an inherently synchronous scenario: VSP users as well as internal Telco
staff expect immediate responses to their requests. Messaging system will ensure
guaranteed delivery and buffer requests to unreliable data sources.

Implications Need to select, install, and configure a message-oriented middleware provider.

Derived
Requirements

Many finer grained patterns are now eligible and have to be decided upon:
message construction, channel design, message routing, message transformation,
system management (see Enterprise Integration Patterns book).

Related Decisions Next, we have to decide on one or more integration technologies implementing the
selected two integration styles. Many alternatives exist, e.g., Java Message
Service (JMS) providers.

Page 11
© Olaf Zimmermann, 2014.

Reference IBM, SATURN
2010

http://www.eaipatterns.com/eaipatterns.html

Y-Template (ABB Software Development Improvement Initiative)

 Link to (non-)functional requirements and design context

 Tradeoffs between quality attributes

© Olaf Zimmermann, 2014
Page 12

In the context of <use case uc
and/or component co>, … facing <non-functional concern c>,

… we decided for <option o1>

… to achieve <quality q>,

and neglected <options o2 to on>,

… accepting downside <consequence c>.

Reference ABB, SATURN
2012

Filled Out Y-Template (Usage Example)

Example: “In the context of data historian access to the archive,
… facing data privacy regulations,

… we decided to encrypt historian database content
(and neglected to not encrypt)
… to achieve confidentiality,

… accepting a negative impact on performance.”

© Olaf Zimmermann, 2014
Page 13

Reference ABB, SATURN
2012

Many ADs Recur in Enterprise Application Architectures

Challenges:
1. SOA literature does not make

required decisions explicit
2. Hundreds of decisions to be made

3. Decision making order unclear

Observation (Claim):
Many architectural decisions are

not specific to a case – they recur

Decision made: “We decided for
pattern/technology/product X to resolve

issue Y because of requirement Z”

Source: SOA Reference Architecture, The Open Group, 2009
https://www.opengroup.org/projects/soa-ref-arch/uploads/40/19713/soa-ra-public-050609.pdf

[JSS 2009] Zimmermann O., Koehler J., Leymann F., Polley R.,
Schuster N., Managing Architectural Decision Models with
Dependency Relations, Integrity Constraints, and Production
Rules. Journal of Systems and Software, Elsevier. Volume 82,
Issue 8 (2009)

Decision required: “You will have to decide for a
pattern/technology/product to resolve issue Y. X is

one alternative you may want to consider,
Z a decision driver”

© Olaf Zimmermann, 2014.
Page 14

https://www.opengroup.org/projects/soa-ref-arch/uploads/40/19713/soa-ra-public-050609.pdf
http://soadecisions.org/soad.htm%23soadjss
http://soadecisions.org/soad.htm%23soadjss
http://soadecisions.org/soad.htm%23soadjss

SOA Decision Modeling (2006-2011): Generic Metamodel

 Existing metamodels and templates refactored and extended for reuse
 Before: documentation – after the fact (past tense)
 With SOAD: design guidance – forward looking (future tense)

References: Architectural Decisions as Reusable Design Assets. IEEE Software 28(1): 64-69 (2011)
Reusable Architectural Decision Models for Enterprise Application Development. Proc. of QOSA 2007

 Page 15
© Olaf Zimmermann, 2014.

“We decided for the
MVC alternative to

resolve the web
page flow issue

because we gained
positive experience

with it on many
similar projects.”

“When
designing a
presentation
layer, you will

have to select a
pattern to

control the Web
page flow.”

“Model View
Controller
(MVC) is a
common

architectural
pattern to

control the Web
page flow.”

http://soadecisions.org/soad.htm%232011update
http://soadecisions.org/soad.htm%232011update
http://soadecisions.org/soad.htm%232011update
http://soadecisions.org/soad.htm%23qosa

SOAD Project (2006-2011): Issues Recurring in SOA Design

 Patterns + recurring issues yield guidance models for a domain
 (Can be) applied to information system design and information integration

 Issue catalog organized by layer/node type, by component/connector

Reference: O. Zimmermann, Architectural Decisions as Reusable
Design Assets. IEEE Software, vol. 28, no. 1, pp. 64-69, Jan./Feb.
2011.

 Page 16
© Olaf Zimmermann, 2014.

http://delivery.qmags.com/d/?pub=ISW&upid=15761SP&fl=others/ISW/ISW_20110101_Jan_2011.pdf
http://delivery.qmags.com/d/?pub=ISW&upid=15761SP&fl=others/ISW/ISW_20110101_Jan_2011.pdf

Recurring AD Issues Organized into 3+1 Levels of Refinement

Architectural

Style
(SOA or other?)

Conceptual Level

Technology Level

Vendor Asset
Level

Business
Executive Level

Service Composition
Paradigm

(Processes? Classes?)

SOA

Workflow
Language

(BPEL? Other?)

BPEL Engine
(IBM WPS? Other?)

Process-Enabled SOA

BPEL 2.0

Message Exchange Pattern
(Request-Reply? One Way?)

Transport Protocol
(SOAP over HTTP?)

SOAP Engine
(Apache Axis2?)

SOAP/HTTP 1.1

Process-Enabled SOA Synchronous Request-Reply

Architectural
Decision Issue

(with Alternatives)

Decision Made/Alternative Selected

for each project

for each service

for each process

Transaction Boundaries?
Service Granularity?
Message Confidentiality?

Transaction Qualifiers in SCA?
Operations per WSDL Port Type?
HTTPS or WSSE?

IBM WebSphere Transaction Settings?
Eclipse WTP/Apache Axis2 Usage?
Apache/WebSphere Configuration?

…

…

500+ Recurring Decisions in
SOA Decision Guidance Model

(SOAD)

 Page 17
© Olaf Zimmermann, 2014.

Reference: IBM, SATURN 2010 and OOP 2011

Sample AD Issue – Addressing Service Granularity Topic

Decision drivers: Functional requirements (domain model), capabilities of BPEL, SOAP,
WSDL, XML processors (verbosity), interoperability, network topology, number of

deployment artifacts and generated code structure, strong vs. weak typing philosophy.

Scope:
Service Operation

Issue: In Message Granularity (Conceptual/Technology Level)
How many message parts should be defined in the service contract?

How deep should the part elements be structured?
The four alternatives have not been published as patterns yet.

Alternative 1:
Dot Pattern

Single scalar
parameter

Easy to process for
SOAP/XML engines,

much work for
programmer

Phase:
Macro Design

Recommendation: All alternatives have their place; alternatives 2 and 3 are often chosen.
Base decision on layer and service type. Avoid overly deep nesting of data structures
unless you want to stress test the XML processing . Minimize message verbosity.

Service
Model

Service
Type

WSDL,
XML Schema

Contracts

Alternative 2:
Bar Pattern

Single complex
parameter

Deep structure and

exotic types can
cause

interoperability
issues.

Alternative 3:
Dotted Line Pattern

Multiple scalar
parameters

Handled by all

common engines,
some programmer

convenience. Enterprise
Data Model

Business
Granularity

Alternative 4:
Comb Pattern

Multiple complex
parameters

Combination of
options 2 and 3,

biggest overhead
for processing

engines.

Out Message
Granularity

Operation To
Service

Grouping

XML Profiling

WDSL, XSD
Editor

Selection

Role:
Service Modeler

Component
Wrapping

Page 18
© Olaf Zimmermann, 2014.

Reference: IBM,
SATURN 2010
and OOP 2011

Workflow-ADs (1/9): Scenario Classification*

Page 19
© Olaf Zimmermann, 2014.

*All ADs modelled in ADMentor tool
– problem statements, option

selection criteria, references, tags

http://www.ifs.hsr.ch/ADMentor-Tool.13201.0.html?&L=4

Workflow-ADs (2/9): Methods, Reference Models

Page 20
© Olaf Zimmermann, 2014.

Workflow-ADs (3/9): Notation

Page 21
© Olaf Zimmermann, 2014.

Workflow-ADs (4/9): Overall Process Design and Data Flow

Page 22
© Olaf Zimmermann, 2014.

Workflow-ADs (5/9): Transaction Management

Page 23
© Olaf Zimmermann, 2014.

Workflow-ADs (6/9): Compensation, Integration

Page 24
© Olaf Zimmermann, 2014.

Workflow-ADs (7/9): Presentation Layer and Flow Control

Page 25
© Olaf Zimmermann, 2014.

Workflow-ADs (8/9): SOA and Interface Design

Page 26
© Olaf Zimmermann, 2014.

Workflow ADs (9/9): Detailed AD Descriptions (Two Examples)*

Page 27
© Olaf Zimmermann, 2014.

ProblemSpace Middleware Selection PSD

JEE Application
ServerWorkflow Engine

*All ADs modelled in ADMentor tool
– problem statements, option
selection criteria, references, tags

http://www.ifs.hsr.ch/ADMentor-Tool.13201.0.html?&L=4

Question, Option, Criteria (QOC) Diagram (in ADMentor)

 Questions
 Issues

 Options
 Alternatives

 Criteria
 Drivers

 Arguments
 Rationale

© Olaf Zimmermann, 2014.
Page 28

ProblemSpace SOA Design Decisions QOC

Service Interface
Granularity

Dotted Line

Bar Pattern Performance

Maintainability

Question (adProblem)

Option (adOption)

Criterion (Requirement)

Argument

Legend

Comb

DotPattern

Name: SOA Design Decisions QOC
Author: ZIO
Version: 0.1
Created: 05.11.2014 14:37:15
Updated: 05.11.2014 14:57:57

See this paper from 1991 from HCI community for introduction to QOCing (note: the concept has been
picked up by several more communities later)

«idea»

Argument 1 A

Argument from QOCing
goes here!

«positiveAssessment»

«negativeAssessment»

«negativeAssessment»

«positiveAssessment»

«adAddressedBy»

«adAddressedBy»

«adAddressedBy»

«adAddressedBy»

Qualitative analysis,
not quantitative!

… jetzt sind Sie an der Reihe (Gruppenarbeit, 20 min)

1. Welche SWA-WFM Themen interessieren Sie besonders?
 Lassen Sich diese Themen als wiederkehrende Architectural Decisions

(ADs) formulieren, evtl. bereits mit Optionen?
 Welche ADs haben Sie in den letzten Wochen im Projekt identifiziert,

diskutiert, verabschiedet, gereviewed, umentscheiden… (und warum)?
 Welche ADs stehen demnächst an?

2. Welchen Charakter haben Ihre ADs aus Schritt 1?
 Wer sind die Entscheidungsträger und Betroffenen (engl. Stakeholder)?
 Welche Kriterien werden zugrunde gelegt (engl. Criteria, Concerns)?
 Wie wird entschieden und begründet?
 Wie (nachhaltig) werden die ADs dokumentiert (Bsp. Sitzungsprotokoll,

Wiki)?
 Wie werden umgesetzt und wie wird die Umsetzung nachverfolgt?

Ergebnis: Bulletliste oder 2-3 ausgefüllte Templates (42010, UMF, Y; arc42)
 Hilfestellung für z.B. zu guten Begründungen: siehe Anhang (Handouts)

© Olaf Zimmermann, 2014.
Page 29

http://arc42.org:8090/display/templateEN/9.+Design+Decisions

Reflektion und Praktische Tipps zu Architekturentscheidungen

 Entscheidungen aktiv identifizieren
 ggfs. mit Reuse a la SOAD/ARC und Tool wie ADMentor

 Entscheidungen priorisieren und bewusst treffen
 “Worst First” vs. “Defer to Last Responsible Moment” (lean/agile principle)

 Tradeoffs abwägen und managen
 Designmethoden z.B. SEI ADD und Evaluationsmethoden z.B. SEI ATAM

 Entscheidungen dokumentieren
 IEEE 42010 Template oder IBM-Template oder Y-Statements

 Entscheidungsumsetzung einfordern und begleiten
 Coaching, Code Reviews
 Architectural Evidence und Architectural Templates in Code

© Olaf Zimmermann, 2014.
Page 30

http://www.sei.cmu.edu/library/abstracts/reports/06tr023.cfm
http://www.sei.cmu.edu/architecture/tools/evaluate/atam.cfm

Vision: Integrated Decision/Design Tool Chain

 Note: Tool builders should justify capture their design decisions (like
any architect)… and share them with their collaborators!

© Olaf Zimmermann, 2014.
Page 31

Reference: O. Zimmermann, Making Architectural Knowledge Sustainable, IEEE Software Talk at SATURN 2012

http://www.sei.cmu.edu/library/abstracts/presentations/zimmermann-saturn2012.cfm

Towards Tool Support for Architectural Refactoring

Page 32
© Olaf Zimmermann, 2014.

AD Mentor Tool (and related Tools)

Execution and
Enforcement

View

Design
Investigation

(Analysis)
View

Knowledge Engineer, Software Architect

(b) Decide (on design options and refactorings to be applied)

(a) Create AD catalog

(c) Execute decisions and refactorings

Decision
 Making and
Refactoring

View

Architectural
Decision

Repository
(Model)

Decisions
Required/Made

Design
Mismatches

Architectural
Refactorings

Issue List Manager
(Controller)

Completed Thesis Project (HSR FHO): CDAR Tool

 Collaborative Decision Management and Architectural Refactoring
(CDAR) Tool
 RESTful integration of Browser user interface/workflow engine with

MediaWiki (the wiki engine behind Wikipedia) via semantic links

© Olaf Zimmermann, 2014.
Page 33

Ongoing Research (NTNU): SADGE

 Joint work with NTNU Trondheim
(M. Anvaari, PhD candidate)

 Goal: Investigate and apply
(extend?) big data techniques
and tools (information retrieval,
natural language processing) to
AD domain (e.g. GATE, ANNIE)
 Look for keywords, suggest text

passages with high reuse
potential to knowledge engineer

© Olaf Zimmermann, 2014.
Page 34

Ongoing Research and Development: ADMentor

 Joint work, HSR FHO and ABB Corporate Research
 Tool website: http://www.ifs.hsr.ch/ADMentor-Tool.13201.0.html?&L=4

 Goal: Develop Add In for Sparx Enterprise Architect that supports AD
reuse and sharing (on top of AD documentation features of other tools)
 Problem and Option vs. Problem Occurrence and Option Occurrence
 Leverage standard product features as much as possible (e.g. rich text

editor, reporting, model refactoring, links)
 ProblemSpace Problem Space

Session State
Management

«adOption»
Serv er Session State

«adOption»
Client Session State

«adOption»
DB Session State

DB Model

Session Identification

«adOption»
Cookie Based

Session

«adOption»
Key/Value Store «adOption»

Relational DB

«adOption»
HTTP Parameter
Based Session

«adSupports»

«adHasAlternative»

«adHasAlternative»«adHasAlternative»

«adHasAlternative»

«adIncludes»

«adRaises»

«adHasAlternative»«adHasAlternative»

«adHasAlternative»

© Olaf Zimmermann, 2014.
Page 35

http://www.ifs.hsr.ch/ADMentor-Tool.13201.0.html?&L=4

Alpha Version of AD Mentor

 Problem Space
Modelling

 Problem Space
Tailoring
 General

Properties
 Tagged Values

 Solution Space
Creation
 Batch mode

(full problem
space)

 Incremental

 Decision Making
 With state

propagation

ProblemSpace ZIOCloudDesignProblemSpace

ServiceModel DeploymentModel

IaaS PaaS SaaS PublicCloud PrivateCloiud

IaaSProvider

AWS Azure

SaaSProvider

CloudFoundry

PaaSProvider

«adStakeholderRole»
Cloud Application

Designer

«adAddressedBy»
«adAddressedBy»

«adAddressedBy»

«adRaises» «adRaises»«adRaises»

«adRaises»

«adAddressedBy»«adAddressedBy»«adAddressedBy»«adAddressedBy»«adAddressedBy»

Summary – Architectural Decisions (AD) im Workflow Design

 Capture the rationale justifying a design
 Answers to “why” questions

 Example:
 “We selected the Layers pattern to make the core banking SOA future

proof, e.g., to be able to add user channels in a flexible manner”
 See this presentation for full example and decision capturing templates

 Practical challenges (can be overcome):
 Retrospective decision capturing takes time and does not yield sufficient

benefits -> lightweight templates, e.g. Y-statements
 Relation to other architectural concepts and viewpoints (quality attributes,

patterns) not understood well and not supported in methods and tools
-> decision modeling with reuse and ADMentor tool

 Many Recurring Workflow Design Decisions
 Languages, transactions, integration patterns, human tasks, …

© Olaf Zimmermann, 2014.
Page 37

Discussion: Strengths and Weaknesses of Workflow Technology

 Doodleware controversy
 Can (and should) domain experts write programs (e.g., process flows)?
 IDE integration (code completion, quick fixes, refactoring, etc.)?
 Debugging and testing support?
 Is full code generation of executable process model from graphical,

business-level model possible (and desired)?

 Is XML a good programming language and/or integration DSL?
 Or should an embedded workflow engine be used (JEE/Spring integration)
 Expressions – Java Expression Language vs. XPath
 Communication (service composition) – REST or Web services, messaging

 Risk of vendor lock in
 Does the engine support all features in standard (syntax/semantics)?
 Which proprietary modeling extensions are available in the engine?

Page 38

© Olaf Zimmermann 2013

http://www.eaipatterns.com/ramblings/02_doodleware.html
http://docs.oracle.com/javaee/6/tutorial/doc/gjddd.html

Architectural Knowledge about Workflow Management (Sources)

 Patterns:
 Workflow Patterns, http://www.workflowpatterns.com/
 U. Zdun, C. Hentrich,

Process-Driven SOA: Patterns for Aligning Business and IT
 http://www.crcpress.com/product/isbn/9781439889299

 Vendor Information:
 Vendor Developer Portals:
 e.g. http://msdn.microsoft.com/en-us/library/ee658122.aspx

 Vendor Method (in IT Service Management Product Context):
 E.g. IBM ISTM tool guidance

 Case Studies:
 Industrial IT:
 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&tp=&arnumber=6300859

 Business IT:
 http://soadecisions.org/soad.htm#oopsla05

© Olaf Zimmermann, 2014.
Page 39

http://www.workflowpatterns.com/
http://www.crcpress.com/product/isbn/9781439889299
http://msdn.microsoft.com/en-us/library/ee658122.aspx
http://www-01.ibm.com/support/knowledgecenter/SSKTXT_7.2.1/com.ibm.ccmdb.doc_721/workflow/c_process_design.html
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&tp=&arnumber=6300859
http://soadecisions.org/soad.htm%23oopsla05

More Information: Project Websites @ IFS HSR

Page 40
© Olaf Zimmermann, 2014.

(screen captions clickable)

http://www.ifs.hsr.ch/ADMentor-Tool.13201.0.html?&L=4
http://www.ifs.hsr.ch/Architectural-Knowledge-Hubs.13193.0.html?&L=4

HINTERGRUNDINFORMATIONEN

Prof. Dr. Olaf Zimmermann
Institut für Software
Leipzig, 20. November 2014.

Studiengang Informatik

SOAD Project Results (2006-2011)

Examples

References

Project
Management
Software

Software Architect

Project Plan incl.
Work Breakdown Structure

Design Modeling Environment Analysis Modeling Environment

Business
Activities

Analysis-Phase
BPM

Business
Processes

Development
Environment

WSDL
Configuration

Files,
Test Cases

BPEL

Service
Contracts

Design Model
(e.g., UML)

Conceptual
Workflow

Tacit ADs

Technique
Papers

Roles Process
Phases/Activities/Tasks

Method
Browser Artifacts

Reusable
Asset
Repository

Industry
Models

Sample
Content

Enterprise
Architecture

Pattern
Literature

Code
Libraries

Other
Content

Review
Create

Consult, tailor

Maintain

Executive ADs
(Project Scoping)

Setup, review

Create, review

Traceability
Management Tool

Issue List
(ADs)

NFRs

Java

Office Suite

Decision Log

NFRs

ADs – Architectural Decisions

Tacit ADs

Entity Types and Associations in UML Metamodel

Chosen solution
and justification

Problem and criteria

Potential solutions with pros and cons

Guidance Model
Decisions Required
and Candidate
Solutions

Decision Model
Decisions Actually
Made on Projects

“We decided for the MVC
alternative to resolve the web
page flow issue because we

gained positive experience with it
on many similar projects.”

“When designing a
presentation layer,

you will have to
select a pattern to

control the Web page
flow.”

“Model View Controller
(MVC) is a common

architectural pattern to
control the Web page

flow.”

UMF template (ART 0513) SOAD extension

 Page 43
© Olaf Zimmermann, 2014.

Reference: IBM, QOSA 2007

Decisions Required vs. Decisions Made

Property Issue
(Decision Required)

Alternative
(Solution Considered)

Outcome
(Decision Made)

Semantics
(attributes)

Need for architectural
decision (motivation),
technical problem,
best practices
recommendations

Design options (e.g.
patterns) with pros and
cons

Option selection,
justification with
rationale relative to
pros and cons

Role (Owner) Knowledge engineer
(community)

Knowledge engineer Project architect

Created when Before/after project Before/after project On project

Consumed when On project On project On/after project

Updated when Periodically Periodically On demand

Retired when Never Never Project termination

© Olaf Zimmermann, 2014.
Page 44

Recurring Issues (1/2)
Artifact Decision Topic Recurring Issues (Decisions Required)

Enterprise architecture
documentation

IT strategy Buy vs. build strategy, open source policy

Governance Methods (processes, notations), tools, reference architectures, coding
guidelines, naming standards, asset ownership

System context

Project scope External interfaces, incoming and outgoing calls (protocols, formats,
identifiers), service level agreements, billing

Other viewpoints Development process Configuration management, test cases, build/test/production environment
staging

Physical tiers Locations, security zones, nodes, load balancing, failover, storage placement

Data management Data model reach (enterprise-wide?), synchronization/replication, backup
strategy

Architecture overview
diagram

Logical layers Coupling and cohesion principles, functional decomposition (partitioning)

Physical tiers Locations, security zones, nodes, load balancing, failover, storage placement

Data management Data model reach (enterprise-wide?), synchronization/replication, backup
strategy

Architecture overview
diagram

Presentation layer Rich vs. thin client, multi-channel design, client conversations, session
management

Domain layer (process control flow) How to ensure process and resource integrity, business and system
transactionality

Domain layer (remote interfaces) Remote contract design (interfaces, protocols, formats, timeout
management)

Domain layer (component-based
development)

Interface contract language, parameter validation, Application Programming
Interface (API) design, domain model

Resource (data) access layer Connection pooling, concurrency (auto commit?), information integration,
caching

Integration Hub-and-spoke vs. direct, synchrony, message queuing, data formats,
registration

Source: O. Zimmermann, Architectural Decision Identification in Architectural Patterns. WICSA/ECSA Companion Volume 2012, Pages 96-103.

Page 45
© Olaf Zimmermann, 2014.

http://soadecisions.org/download/SOAD-SHARK2012v13Final.pdf

Recurring Issues (2/2)

Artifact Decision Topic Recurring Issues (Decisions Required)

Logical component

Security Authentication, authorization, confidentiality, integrity, non-repudiation, tenancy

Systems management Fault, configuration, accounting, performance, and security management

Lifecycle management Lookup, creation, static vs. dynamic activation, instance pooling, housekeeping

Logging Log source and sink, protocol, format, level of detail (verbosity levels)

Error handling Error logging, reporting, propagation, display, analysis, recovery

Components and
connectors

Implementation technology Technology standard version and profile to use, deployment descriptor settings
(QoS)

Deployment Collocation, standalone vs. clustered

Physical node

Capacity planning Hardware and software sizing, topologies

Systems management Monitoring concept, backup procedures, update management, disaster recovery

Page 46

Source: O. Zimmermann, Architectural Decision Identification in Architectural Patterns. WICSA/ECSA Companion Volume 2012, Pages 96-103.

© Olaf Zimmermann, 2014.

http://soadecisions.org/download/SOAD-SHARK2012v13Final.pdf

Good and Bad Justifications, Part 1

Decision driver
type Valid justification Counter example

Wants and
needs of
external

stakeholders

Alternative A best meets user expectations and
functional requirements as documented in user
stories, use cases, and business process model.

End users want it, but no evidence for a pressing business
need. Technical project team never challenged the need for
this feature. Technical design is prescribed in the
requirements documents.

Architecturally
significant

requirements

Nonfunctional requirement XYZ has higher weight
than any other requirement and must be
addressed; only alternative A meets it.

Do not have any strong requirements that would favor one
of the design options, but alternative B is the market trend.
Using it will reflect well on the team.

Conflicting
decision drivers
and alternatives

Performed a trade-off analysis, and alternative A
scored best. Prototype showed that it's good
enough to solve the given design problem and has
acceptable negative consequences.

Only had time to review two design options and did not
conduct any hands-on experiments. Alternative B does not
seem to perform well, according to information online. Let's
try alternative A.

Source: Zimmermann O., Schuster N., Eeles P., Modeling and Sharing Architectural Decisions, Part 1: Concepts. IBM developerWorks, 2008

Page 47
© Olaf Zimmermann, 2014.

http://www.ibm.com/developerworks/architecture/library/ar-knowwiki1/

Good and Bad Justifications, Part 2

Decision
driver type Valid justification Counter example

Reuse of an
earlier design

Facing the same or very similar NFRs as successfully
completed project XYZ. Alternative A worked well there. A
reusable asset of high quality is available to the team.

We've always done it like that.

Everybody seems to go this way these days;
there's a lot of momentum for this technology.

Prefer do-it-yourself
over commercial off-
the-shelf (build over

buy)

Two cornerstones of our IT strategy are to differentiate
ourselves in selected application areas, and remain master
of our destiny by avoiding vendor lock-in. None of the
evaluated software both meets our functional requirements
and fits into our application landscape. We analyzed
customization and maintenance efforts and concluded that
related cost will be in the same range as custom
development.

Price of software package seems high, though
we did not investigate total cost of ownership
(TCO) in detail.

Prefer to build our own middleware so we can
use our existing application development
resources.

Anticipation of
future needs

Change case XYZ describes a feature we don't need in the
first release but is in plan for next release.

Predict that concurrent requests will be x per second shortly
after global rollout of the solution, planned for Q1/2009.

Have to be ready for any future change in
technology standards and in data models.

All quality attributes matter, and quality attribute
XYZ is always the most important for any
software-intensive system.

Source: Zimmermann O., Schuster N., Eeles P., Modeling and Sharing Architectural Decisions, Part 1: Concepts. IBM developerWorks, 2008

Page 48
© Olaf Zimmermann, 2014.

http://www.ibm.com/developerworks/architecture/library/ar-knowwiki1/

… your AD Tool Requirements?

 Functional (usage scenarios, use cases, user stories)
 …

 Non-functional
 …

 Page 49
© Olaf Zimmermann 2013

References

 Architecture Documentation
 ISO/IEC/IEEE 42010, http://en.wikipedia.org/wiki/ISO/IEC_42010

 Architectural Decision (AD) Capturing and Reuse:
 J. Tyree/A. Akerman, Architecture Decisions: Demystifying Architecture.

IEEE Software, 22/2, March/April 2005
 O. Zimmermann, Architectural Decisions as Reusable Design Assets.

IEEE Software, 28/1, Jan./Feb. 2011, http://soadecisions.org/soad.htm
 Uwe Zdun, Rafael Capilla, Huy Tran, Olaf Zimmermann: Sustainable

Architectural Design Decisions. IEEE Software, 30/6, Nov./Dez. 2013

© Olaf Zimmermann, 2014.
Page 50

http://en.wikipedia.org/wiki/ISO/IEC_42010
http://soadecisions.org/soad.htm

AD Coverage at SATURN 2010-2013

 One presentation and tutorial at SATURN 2010
 An Architectural Decision Modeling Framework for SOA and Cloud Design

 Five presentations and one tutorial in 2011 (AD one of seven themes)
 Architectural Implications of Cloud Computing
 Guidance Models and Decision-Making Tooling for SOA, Cloud, and

Outsourcing Solution Design
 Dealing with the Complexities of a Global Service-Oriented Architecture
 Evaluating a Partial Architecture in a ULS Context
 Themes for Architecture Success

 Continued coverage in 2012
 Y-Template introduced in Making Architectural Knowledge Sustainable

 AD concept embedded in many presentations in 2013
 The Design Space of Modern HTML5/JavaScript Web Applications
 8 more presentations mentioning decisions in abstract

© Olaf Zimmermann, 2014.
 Page 51

http://www.soadecisions.org/soad.htm
http://www.sei.cmu.edu/library/abstracts/presentations/lewis-saturn2011.cfm
http://www.sei.cmu.edu/library/abstracts/presentations/zimmermann-saturn2011.cfm
http://www.sei.cmu.edu/library/abstracts/presentations/zimmermann-saturn2011.cfm
http://www.sei.cmu.edu/library/abstracts/presentations/ploom-saturn2011.cfm
http://www.sei.cmu.edu/library/abstracts/presentations/moreno-saturn2011.cfm
http://www.sei.cmu.edu/library/abstracts/presentations/koscho-saturn2011.cfm
http://www.sei.cmu.edu/library/abstracts/presentations/zimmermann-saturn2012.cfm
http://www.sei.cmu.edu/saturn/2013/program/abstracts.cfm%2351

General Architectural Knowledge Sources

 InfoQ, Stack Overflow, TheServerSide.com

 IBM developerWorks, MSDN and similar vendor-sponsored sites
 E.g. Google Developers, Amazon developer forums

 Blogs and websites
 Peter Eeles, Peter Cripps
 Gregor Hohpe’s ramblings on eaipatterns.com
 Martin Fowler’s bliki
 Philippe Kruchten’s weblog and articles on architecture
 Michael Stal on blogspot

 Books and magazines
 IEEE Software magazine – free multimedia content online
 Patterns books
 SEI Technical Reports (TRs)

© Olaf Zimmermann, 2014.
 Page 52

http://www.ifs.hsr.ch/Architectural-Refactoring-for.12044.0.html?&L=4

http://stackoverflow.com/
https://www.ibm.com/developerworks/community/blogs/petereeles/?lang=en
http://www.eaipatterns.com/ramblings.html
http://martinfowler.com/bliki/
http://philippe.kruchten.com/architecture/
http://stal.blogspot.com/
http://www.computer.org/portal/web/computingnow/software
http://www.ifs.hsr.ch/Architectural-Refactoring-for.12044.0.html?&L=4

	Architekturentscheidungen�im Workflow-Design�
	Aufbau und Inhalte dieser Session
	Who am I?
	What is SOA?
	Partitioning into Components and Services (SOA Example)
	Workflow Management – Essentials
	Telco Case Study (with selected Architectural Decisions)
	What are Architectural Decisions (ADs)? Why Care?
	From ADs to Architectural Knowledge Management (AKM)
	AD Capture for Documentation Purposes (in Enterprise Architect)
	AD about Integration Style (IBM UMF Template for Decision Log)
	Y-Template (ABB Software Development Improvement Initiative)
	Filled Out Y-Template (Usage Example)
	Many ADs Recur in Enterprise Application Architectures
	SOA Decision Modeling (2006-2011): Generic Metamodel
	SOAD Project (2006-2011): Issues Recurring in SOA Design
	Recurring AD Issues Organized into 3+1 Levels of Refinement
	Sample AD Issue – Addressing Service Granularity Topic
	Workflow-ADs (1/9): Scenario Classification*
	Workflow-ADs (2/9): Methods, Reference Models
	Workflow-ADs (3/9): Notation
	Workflow-ADs (4/9): Overall Process Design and Data Flow
	Workflow-ADs (5/9): Transaction Management
	Workflow-ADs (6/9): Compensation, Integration
	Workflow-ADs (7/9): Presentation Layer and Flow Control
	Workflow-ADs (8/9): SOA and Interface Design
	Workflow ADs (9/9): Detailed AD Descriptions (Two Examples)*
	Question, Option, Criteria (QOC) Diagram (in ADMentor)
	… jetzt sind Sie an der Reihe (Gruppenarbeit, 20 min)
	Reflektion und Praktische Tipps zu Architekturentscheidungen
	Vision: Integrated Decision/Design Tool Chain
	Towards Tool Support for Architectural Refactoring
	Completed Thesis Project (HSR FHO): CDAR Tool
	Ongoing Research (NTNU): SADGE
	Ongoing Research and Development: ADMentor
	Alpha Version of AD Mentor
	Summary – Architectural Decisions (AD) im Workflow Design
	Discussion: Strengths and Weaknesses of Workflow Technology
	Architectural Knowledge about Workflow Management (Sources)
	More Information: Project Websites @ IFS HSR
	HINTERGRUNDINFORMATIONEN�
	Foliennummer 42
	Entity Types and Associations in UML Metamodel
	Decisions Required vs. Decisions Made
	Recurring Issues (1/2)
	Recurring Issues (2/2)
	Good and Bad Justifications, Part 1
	Good and Bad Justifications, Part 2
	… your AD Tool Requirements?
	References
	AD Coverage at SATURN 2010-2013
	General Architectural Knowledge Sources

