
Microservices Tenets:

Agile Approach to Service Development and Deployment

Overview and Vision Paper, SummerSoC 2016

Olaf Zimmermann1
1 University of Applied Sciences of Eastern Switzerland (HSR FHO),

Oberseestrasse 10, 8640 Rapperswil, Switzerland

ozimmerm@hsr.ch

Abstract. Some microservices proponents claim that microservices form a new architectural

style; in contrast, advocates of Service-Oriented Architecture (SOA) argue that microservices

merely are an implementation approach to SOA. This overview and vision paper first reviews

popular introductions to microservices to identify microservices tenets. It then compares two

microservices definitions and contrasts them with SOA principles and patterns. This analysis

confirms that microservices indeed can be seen as a development- and deployment-level variant

of SOA; such microservices implementations have the potential to overcome the deficiencies of

earlier approaches to SOA realizations by employing modern software engineering paradigms

and Web technologies such as domain-driven design, RESTful HTTP, IDEAL cloud application

architectures, polyglot persistence, lightweight containers, a continuous DevOps approach to

service delivery, and comprehensive but lean fault management. However, these paradigms and

technologies also cause a number of additional design choices to be made and create new options

for many “distribution classics” type of architectural decisions. As a result, the cognitive load for

(micro-)services architects increases, as well as the design, testing and maintenance efforts that

are required to benefit from an adoption of microservices. To initiate and frame the buildup of

architectural knowledge supporting microservices projects, this paper compiles related

practitioner questions; it also derives research topics from these questions. The paper concludes

with a summarizing position statement: microservices constitute one particular implementation

approach to SOA (service development and deployment).

Keywords: architectural principles, architectural styles, domain-driven design, IDEAL

cloud application architectures, DevOps, loose coupling, messaging, patterns, REST,

service-oriented computing, SOA, systems management

1. Introduction and Position Overview

No consensus regarding the relationship between Service-Oriented Architecture (SOA)

and microservices has been reached so far. This paper argues that microservices

concepts and technologies do not constitute a new architectural style different from

SOA, but rather qualify as SOA implemented and services realized in one particular

way with state-of-the-art software engineering practices. This position is derived from

a literature review. This review started with the reading list and the outcomes of a

microservices workshop at the SATURN 2015 practitioner conference [4]1. It analyzed

1 This workshop was organized and primarily attended by practicing architects and thought

leaders (rather than service-oriented computing researchers or microservices advocates).

introductory articles that characterize microservices, industrial case studies, and

emerging microservices patterns2.

The literature review makes evident that the differences between microservices and

previous attempts to service-oriented computing do not concern the architectural style

as such (i.e., its design intent/constraints and its platform-independent principles and

patterns [33]), but its concrete realization (e.g., development/deployment paradigms

and technologies). For instance, the logical application and integration designs of many

microservices architects are geared towards continuous delivery and hosting services

in cloud computing offerings, and they decide for Web-centric technology stacks and/or

pre-packaged open source assets such as MongoDB, Express, AngularJS and Node.js,

sometimes abbreviated MEAN [21]. These choices do not violate any SOA principles

or patterns such as loose coupling and service contract [8,13,33], but rather embrace

and leverage them.

The literature review also unveils that, just like any incarnation of SOA, micro-

services architectures are confronted with a number of nontrivial design challenges that

are intrinsic to any distributed system – including data integrity and consistency

management, service interface design and evolution, and application/service

management (including application and infrastructure security management); such

architecture design issues transcend both style and technology debates [4].

The paper presents these positions in the following steps: first trend topics from the

microservices literature are collected and distilled into seven microservices tenets. Two

popular microservices definitions are then compared by viewpoint and design intent

and analyzed with respect to their SOA positions (Sections 2 and 3). Section 4

highlights critical gaps in the microservices literature in the form of practitioner

questions. These questions are then grouped and generalized to identify research areas

and related problems/questions. Section 5 summarizes and concludes.

2. Microservices Trend(s) in Industry and Academia

State of the practice. In recent years, a shift of focus in developer communities and

publications could be observed: from people and processes (e.g., agile practices such

as user storytelling and test automation) to integration technology and application

hosting (e.g., RESTful HTTP, cloud computing, DevOps). Under the umbrella term

microservices, renewed interest in architecture and design can be observed at present

(similar in intensity to the early days of the patterns movement). Discussing quality

attributes such as scalability and performance or choosing patterns such as “service

contract” [33] or “API gateway” [25] no longer seems to indicate violations of the “you

aren’t gonna need it” (YAGNI) principle or a suffering the “big design upfront”

(BDUF) fallacy; project team members are no longer considered to be “architecture

astronauts” [27] when considering and arguing about microservices architectures.

Agile architecture represents a consensus position between process and structure [15].

According to case studies in the literature, e.g., [2,7,28], successful microservices

architecture designs and microservices deployments are made possible by modern

2 Articles that are rooted in actual project experience, but not peer-reviewed and published in

academic venues were considered to be relevant and eligible for the literature review.

software engineering paradigms and recent advances in Web application development

– for instance, a) domain-driven design and test-driven development, b) IDEAL pipes-

and-filters chaining of fine-grained processing logic, c) polyglot programming and

persistence, d) build and test process automation and continuous deployment, e.g., into

lightweight containers and cloud computing environments and e) lean approaches to

systems management closely intertwined with software construction (alias DevOps

[11]). The literature also points out that there is no “one-size-fits-all”: microservices

are not always suited as SOA implementation approach as certain prerequisites in the

(business) problems to be solved and the project context have to be met [4,5].

State of the art (in academia). The term microservices originates from agile developer

communities and has appeared in blog posts and online articles since 2014; see [17] for

a brief anthology. Academic conferences that focus on services, or at least refer to

service-oriented computing in their calls for papers as one of several topic areas, are

only beginning to pick up the microservices trend/topic, e.g., in keynotes and

workshops, e.g., at ICWE 2016 and ESOCC 2016. At the time of writing, very few (if

any) peer-reviewed research papers on microservices existed.

3 Microservices Tenets vs. SOA Principles and Patterns

This section first identifies the common elements in popular microservices definitions

and contrasts the differing SOA positions in two of these definitions with each other. It

then delivers a detailed comparison based on seven tenets and 4+1 viewpoints [16].

The following common themes recur in the introductory literature and case studies

on microservices [2,7,17,19,22,23,25]:

1. Fine-grained interfaces to single-responsibility units that encapsulate data and

processing logic are exposed remotely, typically via RESTful HTTP resources

or asynchronous message queues. These remote units constitute services that

can be deployed, changed, substituted, and scaled independently of each other.

2. Business-driven development practices and pattern languages such as Domain-

Driven Design (DDD) [3] are employed to identify and conceptualize services.

3. Cloud-native application design principles are followed, e.g., as summarized in

IDEAL (Isolated State, Distribution, Elasticity, Automated Management and

Loose Coupling) [8] or the twelve app factors in Heroku’s method [32].

4. Multiple computing paradigms (such as functional and imperative) and storage

paradigms are leveraged (e.g., relational databases and several types of NoSQL

stores) in a polyglot programming and persistence strategy. Some of these

polyglot services only guarantee eventual rather than strong consistency.

5. Lightweight containers are used to deploy services. Docker and Dropwizard are

frequently mentioned as two related options (although these two technologies

do not reside on the same level of abstraction and have rather different scopes,

operating system virtualization vs. code library assembly).

6. Decentralized continuous delivery is practiced during service development

(which requires/promotes a high degree of automation and autonomy).

7. DevOps: Lean, but holistic and largely automated approaches to configuration,

performance and fault management are employed, which extend agile practices

and include service monitoring.

With respect to SOA, the following two contrary positions define the respective ends

of the spectrum:3

 Microservices as a new architectural style that can be contrasted against SOA

(which also is positioned as an architectural style [33]): “The microservice

architectural style is an approach to developing a single application as a suite of

small services, each running in its own process and communicating with

lightweight mechanisms, often an HTTP resource API. These services are built

around business capabilities and independently deployable by fully automated

deployment machinery. There is a bare minimum of centralized management of

these services, which may be written in different programming languages and

use different data storage technologies” (J. Lewis and M. Fowler [17]). Detailed

explanations and examples of nine characteristics derived from this rather dense

definition can be found in [17].

 Microservices as one way of doing SOA (right): “The microservices approach

has emerged from real-world use, taking our better understanding of systems

and architecture to do SOA well. So you should instead think of microservices

as a specific approach for SOA in the same way that XP or Scrum are specific

approaches for Agile software development.” (S. Newman [23]).

Newman moves on to define microservices via the following principles [23]:

1. “Model around business concepts”, to be represented as bounded contexts

and domain models according to Domain-Driven Design (DDD) patterns

[3].

2. “Adopt a culture of automation” in testing and deployment; practice

continuous delivery.

3. “Hide internal implementation details” such as databases; define

technology-agnostic Application Programming Interfaces (APIs).

4. “Decentralize all the things”: e.g., apply shared governance, prefer service

choreography over orchestration, use dumb middleware but smart

endpoints.

5. Make services “independently deployable”, e.g., let versioned (service)

endpoints co-exist; deploy only one service per (virtual) host.

6. “Isolate failure”, e.g. introduce circuit breakers to make services robust.

7. Be “highly observable”, e.g. via semantic monitoring with data

aggregation.

While the definition by Lewis and Fowler contains nine characteristics, Newman

establishes seven principles. They overlap, but also differ substantially (Table 1).

3 The rationale for the selection of these two particular sources is a) the generality and breadth of

the discussions and b) their popularity.

Table 1. Comparison of definitions (with principle-to-characteristics mapping).

Characteristics by Lewis/Fowler

[16]

Relationship Newman’s Principles [23]

1. Componentization via services (running

in own process and communicating with

lightweight mechanisms)

(similar to) Hide internal implementation details

2. Organized around business capabilities (matches) Model around business concepts

3. Products not projects (no pendant)

4. Smart endpoints and dumb pipes (included in)

Decentralize all the things

5. Decentralized governance (enabling

polyglot programming)

(superset of)

6. Decentralized data management (and
polyglot persistence)

(superset of)

7. Infrastructure automation (and

decentralized management)

(superset of) Adopt a culture of automation

(attribute in definition, but not elaborated

upon in dedicated section of article)

(matches) Independently deployable

8. Design for failure (subset of) Isolate failure

9. Evolutionary design (no pendant)

 (no pendant) Highly observable

Several other introductions exist, which list similar microservices tenets [2,19,25].

The microservices movement has received a lot of attention in online publications;

many reactions have been positive, but sceptic ones can be found as well [18,26,29,31],

e.g., “microservices is SOA, for those who know what SOA is” [12].

SOA vs. microservices. Let us now map the defining elements in the two above

definitions to SOA principles and patterns as defined in the academic literature,

including our own work [33], but also practitioner articles and books such as [9,13].

Table 2 analyzes the definition from [17] to identify SOA pendants in the literature.

Table 2. Analysis of characteristics of microservices in definition from Lewis and Fowler.

Microservices Viewpoint and Quality Intent SOA Pendant

Componentization via

services

Logical/Process Viewpoint (VP)

[16]: separation of concerns

improves modifiability and

scalability

Service provider, consumer,

contract (same concept) [6,9,33]

Organized around

business capabilities

Scenario VP: domain model and

ubiquitous language [3] make code

understandable and easy to
maintain

Key part of SOA definitions in

books and articles since 2003

[6,9,33]

Products not projects n/a (not technical but process-

related)

Enterprise SOA programs often

organized by service products [35]

Smart endpoints and

dumb pipes

Process VP (related to integration):

information hiding improves

scalability and modifiability

Same best practice design rule

exists for SOA, e.g., Enterprise

Service Bus (ESB) design/usage;
risk of misuse presumably higher in

SOA (time will tell for

microservices) [12]

Decentralized
governance

n/a (not technical but process-
related)

SOA governance (might be more
centralized, but does not have to)

[9]

Decentralized Data

Management (DM)

e.g. Logical VP, Physical VP:

polyglot persistence promotes

flexibility and suitability

Same (de)centralization options;

NoSQL more recent than SOA

Infrastructure
automation

Development VP, Physical VP:
speed, repeatability

No direct pendant (not style-
specific, more recently advanced)

Design for failure All VPs: robustness, reliability Key concern for any distributed

system, SOA or other

Evolutionary design n/a (not technical but process-
related): improves replacability,

upgradeability

Service design methods, backward
compatible contracts

The table unveils that several of the nine characteristics of microservices (e.g.,

“products not projects”) primarily pertain to the development process/culture and the

process and physical viewpoints, not the logical architectural patterns used. Most

characteristics do have SOA pendants. Indeed, many existing SOA patterns and best

practices can be found in the microservices literature (often under different names, e.g.

the “API Gateway” [25] shares some intent, responsibilities and underlying atomic

patterns with SOA-style ESBs, e.g., Message Transformation [10] and Remote Façade

[6]). Decentralization is emphasized more than earlier SOA literature did.

An inspection of the second definition [23] yields similar results (Table 3).

Table 3. Analysis of Newman’s principles of microservices.

Microservices Viewpoint, Intent SOA Pendant

Model around business
concepts

Scenario Viewpoint
(VP), intent: see Table 1

Key part of most SOA definitions since 2003,
see e.g. Chapter 2 in [33]

Adopt a culture of

automation

Process VP, Physical

VP, intent: see Table 1

No direct SOA pendant (see Table 1)

Hide internal

implementation details

Logical VP,

Development VP:

flexibility, portability,
maintainability

Important architectural principle and

development idiom (common sense) irrespective

of style (but promoted by most styles) [6,9,33]

Decentralize all the things n/a (not technical but

process-related)

SOA governance, might be more centralized,

but does not have to (see Table 1) [9]

Independently deployable Process VP: frequent
releases/incremental

updates, scalability

No direct pendant in style, but precursor
attempts such as Service Component

Architecture (SCA) [24], an OASIS

specification with vendor and open source
implementations

Isolate failure All VPs, intent:

robustness (see Table 1)

Done in any distributed computing approach

(hopefully)

Highly observable Process VP, Physical
VP: manageability,

maintainability

Done in any distributed computing approach
(hopefully)

None of Newman’s seven principles focusses on the logical viewpoint exclusively;

some of them are not specific to microservices, but represent good advice to designers

of any distributed system (e.g., “isolate failure”). Newman’s position that microservices

form one specific approach to SOA w.r.t. development and deployment (but also

project organization and engineering process) is backed by the table data. Figure 1

summarizes the analysis by positioning the seven tenets established at the beginning of

this section (T-x), the nine characteristics from Lewis and Fowler (LF-y), and

Newman’s seven principles (N-z) in Kruchten’s 4+1 viewpoint scheme [16].4

Fig. 1. Microservices tenets, characteristics, and principles by 4+1 viewpoints.

The figure shows consensus and/or complementary positions in three viewpoints

(scenario, development, and process) and little focus on the remaining two (logical,

physical); one tenet, five L/F characteristics and two N principles deal with cross-

cutting concerns that span multiple viewpoints (e.g., decentralized governance).

Interpretation of analysis results and critique. Table 2, Table 3 as well as Figure 1

support Newman’s evolutionary microservices vs. SOA position well; there is little (if

any) evidence for the claim that microservices form their own novel style.

The order of Newman’s principles seems to be more cohesive and easier to follow

than the order of Lewis and Fowler’s characteristics (e.g., less severe viewpoint

switches occur when reading one-by-one). Regrettably, both definitions mix process,

architecture, and development concerns (e.g., three of nine characteristics in [17] are

related to the development process or deal with governance concerns). In software

architecture research, architectural styles are typically defined via design intent,

principles and patterns (like SOA [33]) or via (technical) constraints (like REST [1]);

it is questionable whether process-related and organizational aspects should be included

in such definitions. Their inclusion in [17] and [23] presumably is motivated by M.

Conway’s law, which states that designs mirror communication structures in

organizations. However, such aspects do not allow architects to recognize the style (or

variant of style) in the code easily, e.g., when reviewing actual architectures. This limits

the usability of the definition (for instance, is “microservices project” an oxymoron?);

4 Note that the scenario viewpoint has a retrospective role in [16], but is used differently here,

representing the entire business perspective; the process viewpoint also covers integration and

remoting concerns according to [16].

such hybrid approach also violates the separation-of-concerns and single-responsibility

principles originally established for modules, but also applicable to definitions.

The provided process-related, organizational guidance does have value as it can be

seen as an enabler and critical success factor. However, the relationship between an

architectural style and an engineering process and culture can be characterized as “cross

fertilization” or prerequisite (but not as inclusion); hence, this important information

would be more consumable and easier to apply if it appeared in a separate, dedicated

place (e.g., an enumeration or section devoted to these aspects).

4. Practitioner Questions and Research Topics/Problems

Even the proponents of microservices architectures (as a variant of/implementation

approach to SOA) agree that getting microservices right is hard; microservices are not

suited for each and every project/program/application landscape (in particular at the

early evolution stages of such efforts [5]). Reasons include the inherent complexities

and subtleties of distributed computing, but also the fine-grained, highly flexible and

dynamic nature of microservices architectures that is emphasized in the seven

microservices tenets from Section 3 (e.g., “independently deployable services”).

Hence, design and decision guidance [34] continues to be highly desirable, or even

becomes increasingly important (even if middleware and tools, e.g., those for

continuous delivery and DevOps, promise to free architects, developer, and operators

from having to design, implement, and perform many routine tasks).

Software architects and developers that consider adopting the microservices

approach as their SOA implementation paradigm would like to learn from early

adopters and thought leaders. Regrettably, the existing published architectural

knowledge, e.g., draft pattern languages, is still rather vague on a number of design

concerns, a.k.a. architectural decisions required [34]. This observation is supported by

the following list of Practitioner Questions (PQs), some of which are backward looking

and some of which are forward looking:5

1. Can you share any experiences and/or hint how to “sell” an investment in

microservices to business stakeholders (e.g., project sponsors, product managers,

C-level management in business and IT organizations)? How well do these

experiences and hints relate to and/or align with the microservices tenets?

2. In which business domain and socio-technical context (or application genre and

software operating range w.r.t. quality attributes [30]) have you applied

microservices concepts and technologies – either successfully or unsuccessfully?

3. Which microservices principles (e.g., “independently deployable services” [23])

did you use in your microservices architecture designs, and how did you implement

them (patterns, frameworks, middleware, tools)? Did you deploy to public or

private cloud offerings (e.g. Amazon Lambdas, Google Cloud Function) or to more

traditional application hosting environments?

5 The above list is (roughly) ordered by phases in the software lifecycle; individual questions

progress from abstract to concrete and from a more logical to a more physical view. The

questions address practitioners with microservices experience (“you”) so that they can be used

in interviews and assessments, e.g. when evaluating offerings w.r.t. maturity and vision.

4. How do you see the relationship between REST and microservices? Is the usage

of Web protocols required and sufficient? Or is RESTful HTTP only one of several

valid remote communication options in the microservices architect’s toolbox and,

if so, what are the decision drivers when choosing an option?

5. How did you find an adequate/a suited service cut (e.g., how small/fine is

small/fine enough)? How can Domain-Driven Design (DDD) [3] (and/or other

approaches to application scoping and functional partitioning) be applied to

decompose monoliths into services – practitioners have reported that they would

welcome guidance that is more concrete than the rather frequently stated advice

“define a bounded context for each domain concept to be exposed as service”?

6. How did you overcome “distribution classics” design challenges such as service

lifecycle management, data representation/schema mismatches, service versioning

and evolution (e.g., change of interface in terms of syntax and/or semantics), and

error handling on your projects?

o Did you define machine-readable service contracts? If so, what should

they cover and how should they be expressed (e.g., are all REST maturity

required, including support for Hypertext as the Engine of Application

State (HATEOAS) [1], is billing information included)? If not, how did

you achieve syntactic and semantic interoperability between service

consumers and providers?

o How did you deal with audit requirements, e.g., Completeness, Accuracy,

and Validity of, as well as Restricted access to financially relevant

business objects (e.g., CAVR controls) [14]?

o Should overall, end-to-end data integrity be ensured in micro-services

architectures, either centrally or de-centrally? If so, how to manage views,

foreign key relationships and other semantic links across microservice

boundaries? And how to backup an entire service landscape at once

(atomic system snapshot, incremental backup)?

7. Do you have any advice/guidance how to compose microservices into end user

client applications? How about application-level intermediaries, i.e., can micro-

services also be clients of other microservices? If so, how to avoid microservice

deployment dependency and dynamic invocation “spaghetti” (e.g., cycles, overly

deep invocation chains)? Do you see a need for/can you recommend any tools,

libraries, frameworks, middleware that can assist with this task, or is plain old

development (applying state-of-the-art software engineering practices) sufficient?

8. Can you report on your technical and organizational scaling strategies (e.g., when

having to deal with large services landscapes and rich/complex domain models

with hundreds or thousands of interconnected entities)? Which tactics and patterns

support these strategies well?

9. Which research and development challenges for a broad and sustainable adoption

of microservices can the service-oriented computing community derive from your

experience?

The above PQs result from the SOA/microservices literature review as well

discussions with more than 10 industry thought leaders, enterprise application

development and integration project practitioners, and SOA/service-oriented

computing community members since early 2015. To compile it, we first reviewed

microservices articles w.r.t. the tenets and resulting design challenges, then refined the

findings in discussions with practicing architects and finally revisited older SOA

literature including own (re-)collections of recurring architectural decisions and

published experience reports. This three-step process was iterated through five times –

reviewing, refactoring, and revising drafts of the questionnaire along the way.

The nine aggregated PQs make evident that many well-known distributed

application/infrastructure architecture design challenges retain, and additional ones

arise (due to the novel aspects/facets of microservices). Partial solutions exist in

industry and academia; hence, a number of research topics can be derived from them.

Service interface design (contracting and versioning). HTTP goes a long way in

standardizing a unified application-level communication interface (i.e., transfer

protocol). However, the vast amount of HTML descriptions of Web APIs defined in

Swagger or “Plain Old HTML” (POH) makes evident that not all interoperability

concerns are covered by RESTful HTTP contracts (e.g., invocation semantics, message

exchange formats, quality-of-service characteristics); dynamic service contracts and

their auto-discovery at runtime are not always applicable, e.g., under audit requirements

such as CAVR controls [14]. In general, syntactic and semantic contracts always exist,

either implicitly or explicitly (as machine- and human-readable contracts). S.

Allamaraju, a pragmatic rather than orthodox “RESTafarian”, states that “distributed

applications using HTTP as an application protocol, and built RESTfully, do have a

contract, but of a different nature and kind” and “research and development

opportunities abound” [1]. For instance, the role of Domain-Driven Design (DDD) in

interface design has to be clarified and possibly supported by methods and tools.6

Furthermore, backward compatibility has to be addressed, with “no versions at all” and

“idempotency of services” being among the design options. An exact, formal definition

of idempotency in this context is needed, as well as architectural patterns to design and

test for idempotency in business object-centric enterprise applications, e.g.,

(information) systems of record and system of engagement. Moreover, RESTful HTTP

is only one of several remoting options according to the microservices tenets

established and definitions analyzed in Section 3, with messaging being an important

alternative. If this “polyglot remoting” assumption holds, service contracts have to

handle (at least) HTTP and the Advanced Message Queuing Protocol (AMQP). This

research challenge originates from PQs 4, 5, and 6.

Microservice assembly and hosting. It is not fully understood yet how to create larger

processing units (e.g., end-user applications) from a collection or repository of

microservices.7 It is also not clear whether there is a continuum from fine-grained

microservices to coarser grained remote facades or to end user applications: Do both

“macro” and “micro” services have their place in the architect’s toolbox (and how about

even finder or coarser granularity levels)? Are novel container patterns and

technologies needed, or are established component and container models such as Spring

Boot and Spring Cloud sufficient (see C. Richardson’s “Microservices Chassis” pattern

[25])? This set of research topics relates to PQs 6 and 7.

6 This topic was for instance discussed in an ICWE 2016 WS-REST (un-)panel; the session

notes are available at https://github.com/apiacademy/WSREST2016/wiki/Olaf-Zimmermann
7 Assembly is a deliberately neutral term; related terms that were established earlier include

service composition, business process management, and even workflow management.

https://github.com/apiacademy/WSREST2016/wiki/Olaf-Zimmermann

Microservice integration and discovery. When accessing microservices conceptual

dissonances and format/protocol mismatches must be overcome. While some of this

work can be left to the Web machinery, leveraging dynamic content negotiation and

supporting multiple media types in service requests and responses, it is not yet clear

what the pendant to enterprise application integration in the microservices age is. The

Enterprise Service Bus (ESB) pattern [33], its commercial implementations and their

project use have been criticized by members of the microservices community as overly

heavyweight, inflexible and unmanageable; however, the requirement for such

integration capabilities cannot simply be argued away. Hence, message routing and

transformation patterns [10] have to be supported and possibly adapted to fit the

microservices tenets: Do emerging microservices patterns such as C. Robinson’s “API

Gateway” [25] provide sufficient design guidance or are additional ones needed? If so,

how to stitch such patterns together? Should transformations be wrapped in and

deployed as first-class microservices (of a particular type)? And once services (of

various types, e.g., integration services vs. domain logic services) have been deployed,

how can and should they be found, e.g., via network- or application-level discovery?

These two research topics stem from, and can be traced back to, PQ 8.

Dependency management. Binary and source dependency resolution (static and

dynamic) is needed and difficult to design, irrespective of build and integration

technologies used.8 Just one example: the transitive closure of open source licenses used

in small projects, see e.g. the domain-driven-design sample application (realizing two

cargo use cases) from 2009, can easily reference hundreds of libraries, which reference

dozens of different license types directly or indirectly [3]. Hence, should a concept such

as service wiring from Service Component Architecture (SCA) [24] be revived and

possibly extended to support license- and QoS-aware microservice dependency

management (in the context of the microservices tenet “fine grained service interfaces”

and principle “independently deployable” from Section 3)? This problem has its roots

in PQs 6, 7, and 8; its solutions can be seen as prerequisites for successful development

and usage of service contract and deployment tools (and traced back to a tenet from

Section 3, decentralized continuous delivery).

Service and end user/client application testing. Microservices usage promises to be

more dynamic and flexible, requiring more runtime and configuration effort than

coding. As a consequence, an application’s external boundary gets blurred; therefore it

is no longer clear where/how pre- and post-conditions can be specified and (validated

during testing). How does dynamic, ad hoc service (provider) mocking work? Are

integrated white box and black box service-specific test frameworks needed (a.k.a.

“SUnit”)? How to source realistic service invocation test data (in absence of end user

oriented client applications)? What is the impact of continuous delivery, cloud

computing, and DevOps on tests? Testing in production is an option in some, but not

in all business sectors and application genres (example: video-on-demand provider vs.

financial institution [2,7]). This topic originates from PQs 5, 7, and 8.

8 Progress has been made in recent years; functionally rich (but sometimes cumbersome to use)

various proprietary and open source package managers and integration servers are now

available for programming languages and platforms such as Java, Ruby, Scala, and Linux.

5. Summary and Conclusions

In this paper, we distilled seven microservices tenets from the literature: fine-grained

interfaces (to independently deployable services), business-driven development,

IDEAL cloud application architectures, polyglot programming and persistence,

lightweight container deployment, decentralized continuous delivery, and DevOps with

holistic service monitoring.

A viewpoint-based analysis and comparison of two popular definitions of micro-

services followed, which supports the position that microservices are not entirely new,

but qualify as “SOA done right”. More precisely, microservices comprise an organic

implementation approach to SOA (just like Scrum is one, but not the only way to

practice agile development). Common characteristics include business orientation,

polyglot programming in multiple paradigms and languages, and design for failure;

decentralization and automation are emphasized specifically in the microservices

implementation approach. An important microservices property is that services can be

deployed independently of each other, which requires services to communicate with

each other via remoting protocols such as HTTP and asynchronous message queues.

The comparison tables in Section 3 as well as Table 4 provide evidence for this

evolutionary and complementary positioning of microservices w.r.t. SOA.

Table 4. Summary of relationships: SOA style and its microservices implementation approach.

Topic (Concern) SOA Style Microservices Implementations

Core metaphor Service, service consumer-

provider contract pattern

Fine-grained service interfaces, independently

deployable services, RESTful resources

Method Object-Oriented Analysis and
Design (OOAD); service-

specific design methods

Domain-Driven Design (DDD), agile
practices (refining and partially simplifying

OOAD

Architectural principles Layering, loose coupling,

flow independence,
modularity

IDEAL cloud architectural principles

(overlapping with SOA principles, but also
covering cloud computing-specific aspects)

Data storage Information services, service

provider implementations
(e.g., RDB, backend system)

Polyglot persistence (SQL, NoSQL storage

types, NewSQL)

Deployment and hosting out of scope (of logical style

definition)

Lightweight containers (e.g., Docker,

Dropwizard); xaaS cloud offerings

Build tool chain out of scope (of logical style
definition)

Decentralized continuous delivery

Operations (systems
management)

Lean but comprehensive system/service
management (a.k.a. DevOps)

Message routing,

transformation, adaption

Enterprise Service Bus (ESB)

pattern

API gateways, lightweight messaging systems

(e.g., RabbitMQ); transformation services

Assembly/composition Service choreography and

orchestration patterns

Service orchestration via Plain Old

Programming (POP)

Lookup (runtime, design

time)

Service registry pattern

(including service repository)

Custom service registries and repositories

(e.g. Swagger-based), service discovery (on
application level and network level)

Technologies and software engineering practices have evolved since 2009 when the

SOA hype had passed its peak and came to a temporary halt (e.g., cloud computing,

NoSQL, and DevOps have become popular since then).

The complexities and fallacies of distributed computing cannot be argued, tested, or

generated away, no matter how trends are named and positioned and no matter how

much progress is made with computing, storage, and networking hardware,

virtualization, containers, deployment automation; in the foreseeable future,

requirements and constraints regarding accuracy, latency, scalability, security (of

algorithms and data structures/logic and data access), etc. will continue to drive

architectural decision making and implementation work on projects (and products).

Hence, successful microservices realizations have to combine SOA principles and

patterns with modern software engineering practices. The practitioner questions

identified in Section 4 of this paper have to be answered to increase the chances that

the microservices trend will sustain; related research opportunities abound.

In summary, service-orientation is here to stay, reconfirming the (frequently

misinterpreted) blog post entitled “SOA is dead” [20], whose subtitle was: “long live

services” – of various kinds and on multiple levels of granularity □

Acknowledgments

I would like to thank Jonas Biedermann, Simon Brown, Wolfgang Giersche, Gregor

Hohpe, Hansjörg Huser, Oliver Kopp, Frank Leymann, Daniel Lübke, Cesare Pautasso,

Gerald Reif, Mirko Stocker, the attendees of the SEI SATURN 2015 workshop on

microservices as well as the anonymous peer reviewers of and paper presentation/poster

session attendees at SummerSoC 2016 for inspiring discussions and/or thoughtful

comments on earlier versions of this article. I would also like to thank James Lewis for

the constructive and inspiring discussion following his ICWE 2016 keynote, which

confirmed the SOA vs. microservices positioning presented in this paper, which had

been accepted for publication previously.

References

1. Allamaraju, S., Describing RESTful Applications, http://www.infoq.com/articles/subbu-

allamaraju-rest

2. Cockroft, A., Migrating to Microservices, http://www.infoq.com/presentations/migration-

cloud-native

3. Evans, E., Domain-Driven Design – Tackling Complexity in the Heart of Software,

Addison Wesley, 2003.

4. Fairbanks G., Keeling M., Microservices Workshop at SEI SATURN 2015,

https://github.com/michaelkeeling/SATURN2015-Microservices-Workshop

5. Fowler, M., Microservices Prerequisites,

http://martinfowler.com/bliki/MicroservicePrerequisites.html

6. Fowler M., Patterns of Enterprise Application Architecture. Addison Wesley, 2003.

7. Giamas, A., From Monolith to Microservices, Zalando's Journey,

http://www.infoq.com/news/2016/02/Monolith-Microservices-Zalando

8. Haberle T., Charissis L., Fehling, C., Nahm, J., Leymann, F., The Connected Car in the

Cloud: A Platform for Prototyping Telematics Services, IEEE Software 32(6), 2015

9. Hagen, K., Murer, S., Fifteen Years of Service-Oriented Architecture at Credit Suisse,

IEEE Software 31(6), 2014

10. Hohpe, G., Woolf, B., Enterprise Integration Patterns. Addison Wesley, 2004.

http://www.infoq.com/articles/subbu-allamaraju-rest
http://www.infoq.com/articles/subbu-allamaraju-rest
http://www.infoq.com/presentations/migration-cloud-native
http://www.infoq.com/presentations/migration-cloud-native
https://github.com/michaelkeeling/SATURN2015-Microservices-Workshop
http://martinfowler.com/bliki/MicroservicePrerequisites.html
http://www.infoq.com/news/2016/02/Monolith-Microservices-Zalando

11. Hüttermann, M., DevOps for Developers, Apress, 2012.

12. Jones, S., Microservices is SOA, for those who know what SOA is, http://service-

architecture.blogspot.ch/2014/03/microservices-is-soa-for-those-who-know.html

13. Josuttis, N., SOA in Practice, O’Reilly, 2007.

14. Julisch, K., Suter, C., Woitalla T., Zimmermann, O., Compliance by Design – Bridging the

Chasm between Auditors and IT Architects. In: Computers & Security, Volume 30, Issue

6-7 2011, Elsevier

15. Kruchten, P., Agile Architecture, blog post (with links to additional information),

http://philippe.kruchten.com/2013/12/11/agile-architecture/

16. Kruchten, P., The 4+1 View Model of Architecture. IEEE Software 12(6), 1995

17. Lewis, J., Fowler, M., Microservices – a definition of this new architectural term

http://martinfowler.com/articles/microservices.html

18. Little, M., SOA versus Microservices? http://www.infoq.com/news/2015/02/special-

microservices-mark-litle

19. Loftis, H., Why Microservices Matter,

https://blog.heroku.com/archives/2015/1/20/why_microservices_matter

20. Manes, A. T., SOA is Dead; Long Live Services, Burton Group, 2009.

http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-services.html

21. Mean.js, Open-Source Full-Stack Solution For MEAN Applications, http://meanjs.org/

22. Nilsson, J., Chunk Cloud Computing, http://jimmynilsson.com/blog/posts/CCC.pdf

23. Newman, S., Building Microservices – Designing Fine-Grained Systems, O’Reilly, 2015

24. OASIS, Service Component Architecture, http://www.oasis-opencsa.org/sca

25. Richardson, C., Microservices: Decomposing Applications for Deployability and

Scalability, https://www.infoq.com/articles/microservices-intro

26. Rotem-Gal-Oz, A., Services, Microservices, Nanoservices – oh my!

http://arnon.me/2014/03/services-microservices-nanoservices/

27. Spolsky J., Architecture Astronauts Take Over,,

http://www.joelonsoftware.com/items/2008/05/01.html

28. Steinacker, G., Otto case study, https://dev.otto.de/author/gsteinacker/

29. Strumpflohner, J., Notes and thoughts on Martin Fowler's talk about Microservices at

XConf, http://juristr.com/blog/2015/01/notes-microservices-fowler-xconf/

30. Torres. F., Context is King: What's Your Software's Operating Range, IEEE Software 32

(6), 2015

31. Wähner, K., Do Good Microservices Architectures Spell the Death of the Enterprise

Service Bus?, https://www.voxxed.com/blog/2015/01/good-microservices-architectures-

death-enterprise-service-bus-part-one/

32. Wiggins, A., The Twelve-Factor App, http://12factor.net/

33. Zimmermann, O., An Architectural Decision Modeling Framework for Service-oriented

Architecture Design, University of Stuttgart, 2009.

34. Zimmermann, O., Wegmann L., Koziolek H., Goldschmidt, T., Architectural Decision

Guidance across Projects, Proc. of. IEEE/IFIP WICSA 2015.

35. Zimmermann, O., Milinski, S., Craes, M., Oellermann F., Second Generation Web

Services-Oriented Architecture in Production in the Finance Industry, Companion to the

19th Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems,

Languages, and Applications (OOPSLA '04). ACM, 2004.

NOTICE: This is the author’s version of a work published

in Springer Computer Science – Research and Development.

Online access to a definitive version is provided here:

http://rdcu.be/mJPz. Cite as Zimmermann, O. Comput Sci

Res Dev (2016). doi:10.1007/s00450-016-0337-0.

http://service-architecture.blogspot.ch/2014/03/microservices-is-soa-for-those-who-know.html
http://service-architecture.blogspot.ch/2014/03/microservices-is-soa-for-those-who-know.html
http://philippe.kruchten.com/2013/12/11/agile-architecture/
http://martinfowler.com/articles/microservices.html
http://www.infoq.com/news/2015/02/special-microservices-mark-litle
http://www.infoq.com/news/2015/02/special-microservices-mark-litle
https://blog.heroku.com/archives/2015/1/20/why_microservices_matter
http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-services.html
http://meanjs.org/
http://jimmynilsson.com/blog/posts/CCC.pdf
http://www.oasis-opencsa.org/sca
https://www.infoq.com/articles/microservices-intro
http://arnon.me/2014/03/services-microservices-nanoservices/
http://www.joelonsoftware.com/items/2008/05/01.html
https://dev.otto.de/author/gsteinacker/
http://juristr.com/blog/2015/01/notes-microservices-fowler-xconf/
https://www.voxxed.com/blog/2015/01/good-microservices-architectures-death-enterprise-service-bus-part-one/
https://www.voxxed.com/blog/2015/01/good-microservices-architectures-death-enterprise-service-bus-part-one/
http://12factor.net/
http://link.springer.com/article/10.1007%2Fs00450-016-0337-0
http://rdcu.be/mJPz

