
Architectural Refactoring for the Cloud:
a Decision-Centric View on Cloud Migration

Olaf Zimmermann1
1 University of Applied Sciences of Eastern Switzerland (HSR FHO),

Oberseestrasse 10, 8640 Rapperswil, Switzerland
{firstname.lastname}@hsr.ch

Abstract: Unlike code refactoring of programs, architectural refactoring of
systems is not commonly practiced yet. However, legacy systems typically have
to be refactored when migrating them to the cloud; otherwise, these systems
may run in the cloud, but cannot fully benefit from cloud properties such as
elasticity. One reason for the lack of adoption of architectural refactoring is that
many of the involved artefacts are intangible – architectural refactoring
therefore is harder to grasp than code refactoring. To overcome this inhibitor,
we take a task-centric view on the subject and introduce an architectural
refactoring template that highlights the architectural decisions to be revisited
when refactoring application architectures for the cloud; in our approach,
architectural smells are derived from quality stories. We also present a number
of common architectural refactorings and evaluate existing patterns regarding
their cloud affinity. The final contribution of this paper is the identification of
an initial catalog of architectural refactorings for cloud application design. This
refactoring catalog was compiled from the cloud patterns literature as well as
project experiences. Cloud knowledge and supporting templates have been
validated via action research and in cooperation with industry practitioners.

Keywords: Architectural Decisions, Architectural Patterns, Cloud Computing,
Knowledge Management, Reengineering, Software Evolution and Maintenance

1. Context

Software-intensive systems often have to be reengineered, e.g. due to unpredictable
context changes and technology innovations that occur during system lifetime.
Furthermore, modern development approaches (e.g., those summarized as agile
practices) advise software engineers to evolve their designs and implementations in
small, frequent iterations that embrace change. Many reengineering activities affect
the software architecture of these systems; service-oriented architectures and cloud
deployment pose particular challenges. Given the success of the agile practice of code
refactoring, it is rather surprising that architectural refactoring has not taken off yet –
refactoring to patterns (in response to design smells) has focussed on the code level so
far [18]; in cloud migration, other reengineering techniques have been used [12,24].

This paper approaches reengineering from a different view than previous attempts.
It first positions architectural refactoring as a task-centric technique for restructuring
an existing architecture (along with its representations) that revisits the architectural
decisions made in the context of quality stories and architectural smells. Next, the
paper establishes a decision- and task-centric template for architectural refactorings
and instantiates it in several examples. The paper also scores existing patterns
regarding their cloud affinity and outlines a catalog of cloud application refactorings
based on two cloud user stories. Finally, it gives an outlook on how practitioners and
researchers can apply and advance a practice of architectural refactoring for the cloud.

An Architectural Refactoring (AR) revisits certain Architectural Decisions (ADs)
and selects alternate solutions to a given set of design problems. An AR may alter the
internal structure of a system (in all architectural viewpoints [21]), but does not
change the external behaviour of this system (e.g., functional capabilities and
interface contracts at the system and/or service boundary). This definition puts less
emphasis on structure than previous ones – and focusses on design rationale and
related tasks instead. In this setting, decision making in itself is seen as a set of
interrelated engineering tasks; the revision of a group of architectural decisions causes
additional reengineering tasks. Such tasks include:

• Tasks to realize structural changes in a design. Such architectural changes
are similar to code refactorings, but have a larger scale and scope, e.g.,
components, subsystems and systems of systems with their interfaces (“All
architecture is design but not all design is architecture. Architecture
represents the significant design decisions that shape a system, where
significant is measured by cost of change.” [3]).

• Implementation and configuration tasks in development and/or operations,
(depending on the viewpoint the architectural refactoring pertains to).

• Documentation and communication tasks resulting from architectural
decisions, e.g., modelling activity, technical writing assignment, or design
workshop preparation/facilitation/post-processing.

In the context of legacy system modernization and refactoring for the cloud, some
of the architectural decisions to be revisited may have been made and executed a long
time ago; if so, the rationale for the original decision as well as the information about
the executed tasks might have been lost. On agile projects, the design might be
documented mostly tacitly, e.g. in code, in agile planning tools, or in the individual
memory of project team members. Hence, architectural refactoring cannot concentrate
solely on formal specifications (such as architectural models); it must treat tasks (of
the types introduces above) as first-class citizens in its practices and supporting tools.

2. Concepts: Architectural Smell, Architectural Refactoring

Generally speaking, the goal of a refactoring is to improve a certain quality while
preserving others. For instance, code refactoring is defined as a technique for
restructuring an existing body of code that alters its internal structure without
changing its functionality (“a refactoring is a change made to the internal structure of
software to make it easier to understand and cheaper to modify without changing its

observable behavior” [9]). Code refactorings can work with machine-readable entities
such as packages, classes and methods; hence, they can leverage mature data
structures from complier construction such as symbol tables and Abstract Syntax
Trees (ASTs). On the architecture level, we deal with architecture documentation and
the manifestation of the architecture in the code, as well as other runtime artefacts
such as configuration files (in cloud deployments, some of these artefacts may change
rapidly, e.g., the detailed application deployment topology changes every time an
auto-scaling feature is used in order to leverage cloud elasticity). Hence, there is no
single architecture AST; ARs have to deal with a) components and connectors that
might be modelled, sketched, or only represented implicitly in code and configuration
files, b) design rationale represented in template-based decision logs or in
unstructured text, and c) less obvious carriers of architectural knowledge such as
meeting minutes and work items in collaboration tools and/or task management
systems. When applications are architected for the cloud, additional artefacts such as
service provisioning and elasticity management scripts come into play.

Taking inspiration from these definitions and context information, but also from
work in the architectural knowledge management community [1], we define an
architectural smell as the observation or the suspect that something in architecture
design and its implementation is no longer adequate (i.e., good enough) under the
actual system requirements and current constraints (e.g., expressed as non-functional
requirements and/or quality attribute scenarios [2]); these requirements and
constraints may differ from the originally specified ones. An architectural smell might
be captured explicitly, e.g. as an element (item) of technical debt or technical risk, but
it does not have to; it might remain tacit.

An Architectural Refactoring (AR) then is a planned and coordinated set of
deliberate architecture design activities that addresses a particular architectural smell
and improves at least one quality attribute while leaving the scope and functionality of
the system unchanged. According to this definition, an AR can possibly have a
negative influence on other quality attributes, due to conflicts and related trade-offs
(e.g., performance vs. security). An AR manifests itself through direct or indirect
changes to architectural artefacts such as code and architecture documentation (as
enumerated and listed above). These architectural changes can be represented as
interrelated project tasks, which have to be executed jointly and consistently. An AR
has all-or-nothing-semantics; a single update transaction on the project workspace
including code and documentation should be performed when executing an AR (to
preserve conceptual integrity of the design and consistency of its documentation).

2.1 Example: De-SQL (Doodle)

In their technology blog, the chief technicians at Doodle explain why and how they
moved from MySQL to MongoDB after several years of production use of their
collaborative online calendar scheduling service [6].

The architectural smell in this example was that it took very long to upgrade large
production databases (several GB) from the current SQL database scheme to a new
one. The affected quality attributes were development and operations team

productivity, as well as performance and scalability of database and data access layer.
The root cause for the symptoms behind the smell was that relational database
management systems are not designed for this particular usage scenario – they can
handle it, but do not expose optimal quality attribute characteristics. The solution at
Doodle was to revisit architectural decisions on database paradigm, data access layer
(APIs) and database provider. A decision was made to use the schemaless, document-
oriented paradigm (one flavour of NoSQL) and MongoDB as database provider. A
trade off could be observed between better migration management, at the cost of new
approach to database administration and the need for a new API; furthermore, the
transaction boundaries had to be redesigned (e.g., commit and rollback operations,
compensation) because MongoDB does not have the same consistency management
characteristics as MySQL, the relational database management system used so far.

In summary, the decision for MongoDB instead of MySQL brought more fle-
xibility due to schema-less. Downsides were additional and increased administrative
and coding effort. This example clearly qualifies as an AR according to our
definition: it revisits certain ADs (and has tasks of various types attached to it), but it
is not a code refactoring as it deals with middleware selection and configuration.

2.2 Concept (Method Extension): Quality Stories

An AR needs a baseline, a design goal. NFRs and quality attribute scenarios serve this
purpose in practitioner methods and software engineering literature [2]. These
requirements engineering concepts continue to be useful in our AR context. With
inspiration from agile user stories [5], we additionally propose to specify quality
stories as a means of establishing refactoring goals.

Fig. 1. Quality story template (structure) with personas.

Figure 1 presents a quality story template that also calls out the most relevant
personas, i.e., stakeholders of ARs. Architectural smells arise from the inversion of
the quality goals that are specified in the story.

Figure 2 establishes the architectural refactoring goal in the Doodle example as a
quality story that is formatted according to the template from Figure 1. The
architectural smells are the negations of the “so that” statements in the story.

Fig. 2. Quality story template applied to database example.

2.3 AR Elements: From Pattern Format to Task- and Decision-Orientation

Table 1 defines an AR template that calls out and elaborates upon the key elements
of an AR, including the architectural decisions to be revisited:

Table 1. Decision- and task-centric architectural refactoring template.

Architectural
Refactoring (Id)

How can the AR be recognized and referenced easily? The name should
be expressive, e.g. metaphor. Unlike pattern names (which typically are
nouns), it should be able to be used as a verb in a sentence (just like
names of code refactorings).

Context Where (and under which circumstances) is this AR eligible? The
context section may include information about the viewpoint and/or
abstraction/refinement level in an enterprise architecture management
framework such as The Open Group Architecture Framework
(TOGAF) or a software engineering process such as Unified Process
(UP).

Stakeholder
concerns and
quality attributes
(design forces)

Which non-functional requirements and constraints are
affected/impacted by this AR?

Architectural smell When and why should this AR be considered?
Architectural
decision(s)

Typically more than one solution exists for a given design problem. So
applying an AR means revisiting one or more ADs; which ones?

Evolution outline Which design elements does the AR comprise of (e.g. patterns for
conceptual ARs)? This is the center piece of the AR, providing a
solution sketch.
Since the AR describes a design change, two solution sketches may be
provided (one illustrating the design before the AR is applied, one the
design resulting from the application of the AR).

Affected
architectural
elements

Which design model elements have to be changed (e. g., components
and connectors (if modelled explicitly)? This is a link to the structural
design space, which might have been modelled explicitly, sketched
informally or is only represented (hidden) in code.

Execution tasks How can the AR be applied? Some of these steps can possibly be
automated, like the execution of many code refactorings; but not all of
them as ARs operate on a higher level of abstraction. The task
description might be formatted according to the metamodels and
guidelines in agile planning tools and/or full-fledged design methods.

This AR template has been inspired by templates used in the patterns community
(e.g. design forces are listed and the evolution outline is similar to the solution sketch
found in many pattern descriptions); however, it also contains several novel elements,
e.g., the architectural decisions to be revisited and the execution tasks. The motivation
for the selection of these seven plus one AR elements is partially given in questions
and explanations appearing in the right column in Table 1. Additional rationale is:

• Terminology such as architectural viewpoint, stakeholder concern, quality
attribute, and architectural element are well established in the software
architecture community and, as a consequence, also defined in the
ISO/IEC/IEEE 42010 standard for architectural descriptions [14].

• The context metaphor and its importance for knowledge sharing and
design guidance have been described by P. Kruchten [20], who also is one
of the authors of the Unified Process and the creator of the 4+1 views on
software architecture [19].

• Architectural patterns and architectural decisions have demonstrated to be
efficient and effective knowledge carriers and education means [4,10,30];
substantial related knowledge engineering (a.k.a. harvesting, mining)
experience has been gained and published. For instance, the patterns and
AD/AKM communities also point out the importance of finding good
names [29].

• The notion of an (architectural) smell takes inspiration from code
refactorings, and has been suggested already in the early work on
architectural refactoring by M. Stal [22].

• Our own project experience in professional services and research and
development, as well as action research conducted on multiple projects
(1994 to present) suggests that while a direct link from software
architecture to project management exists in practice such link has not
been suggested in the scientific literature on software architecture yet.

AR template and one example have just been published in [27]; in this paper, we
extend the AR coverage with more examples and an application to cloud application
development and cloud migration (see remainder of Section 2 and Section 3).

Table 2 applies the template from Table 1 for the Doodle example to identify the
knowledge elements that are apparent and important to know to be able to apply the
same AR in a similar project context:

Table 2. Architectural refactoring template instantiated for Doodle example.

Architectural Refactoring
(Id)

De-SQL

Context Logical viewpoint and deployment viewpoint
Both conceptual level (database paradigm) and asset level
(MySQL vs. MongoDB) of abstraction

Stakeholder concerns and
quality attributes (design
forces)

Flexibility (w.r.t. data model changes), data integrity, migration
time

Architectural smell It takes rather long to migrate existing data after an update to
the data model (database schema)

Architectural decision(s) • Choice of data modeling paradigm (current decision is:
relational)

• Choice of metamodel and query language (current decision
is SQL)

• Choice of database management system (current decision
is MySQL)

Evolution outline • Use document-oriented database such as MongoDB
instead of RDBMS such as MySQL

• Redesign transaction management and database
administration

Affected architectural
elements

Database tier (e.g. server process, backup and restore facilities);
data access layer (e.g. patterns for commands and queries,
connection management)

Execution tasks • Design document layout (i.e., the pendant to the machine-
readable SQL DDL)

• Write new data access layer, implement SQLish query
capabilities within project

• Decide on transaction boundaries (if any)
• Document the changes to database administration (e.g.,

command-line DDL/DML, backup)

2.4 Generic, Domain-Independent Architectural Refactorings

ARs residing on a rather high level of abstraction, but not yet specific to service-
oriented computing or cloud application development can easily be identified in the
literature (when applying the concepts and definitions from above). Some examples
of such general-purpose ARs are:

• Introduce Concurrency (Parallel Processing). Move from single program
execution thread to multithreading (e.g., in mid-tier of business application
to remove architectural smells such as poor throughput, blocking of input
channels, and frequent timeouts.

• Introduce Cache. See Table 3 below.
• Move Responsibility. See Table 4 below.
• Downsize Mid-Tier Container Middleware. E.g. replace JEE Application

Server with a different inversion-of-control and dependency injection
container to reduce management overhead, learning effort and cost (while
possibly sacrificing system transaction management, application security and
portability promoted by standardized JEE APIs).

• Rightsize Integration Middleware. Replace custom wrapper and standard
middleware with more modern or less expensive asset, a.k.a. Change
messaging channel implementation (in enterprise application integration) to
improve Quality-of-Service (QoS) or cut cost while preserving the
advantages of loose coupling and messaging (such as request throttling,
asynchrony, etc.).

Note that no basic Create, Read, Update, Delete (CRUD) operations such as „Add
Architectural Element“ or „Remove Architectural Element“ appear in the AR list
(note: this is the same philosophy that is followed in code refactoring catalogs and
tools; e.g., in Eclipse: “Add New Class” does not qualify as an AR, but “Extract
Method” does) [25]. Some of the ARs in a logical, functional viewpoint [16] have an
impact on component collaborations and ARs in other viewpoints, e.g., the
deployment viewpoint.

Table 3 and Table 4 apply the template from Table 1 to two of these ARs:

Table 3. An example of a general architectural refactoring (Introduce Cache).

Table 4. Another example of a general architectural refactoring (Move Responsibilities).

To validate our template, we conducted action research and presented the
resulting AR compilation to practicing architects from different companies with good
feedback [28]. As an additional validation activity, an experienced software engineer
from a major Swiss bank (who, in the role of master student, is currently investigating
the AR topic and tool support for it via thesis project assignments) has also captured a
subset of his experience in software maintenance roles in the form of ARs that
comply with the template in Table 1. In total, ten ARs have been captured so far;
additional modelling and knowledge engineering work leveraging the template is
already planned.

2.5 Domain-Specific ARs: Enterprise Applications, Messaging, SOA

Layered enterprise applications and Web application development work with
domain-specific refinements of general architectural concepts such as those the
previous examples dealt with. For instance, an HTTP session store might be a logical
component in the presentation layer of the mid-tier of a Web application [9]. Hence,
the common ARs from the previous subsections can be refined into domain- and
style-specific ARs. Some examples of such domain-specific ARs, which can only be
identified and not fully described in this paper, are:

• Push application and/or session state management from server down to
database, from client or server down to database (i.e., to support horizontal
scaling).

• Pull session state management up (from server to client, from database to
server).

• Enrich Web client.

• Streamline Web client (reduce client workload and processing capabilities).
• Change container technology, change dependency injection type.
• De-normalize relational database.
• Normalize relational database.
• Partition database (add sharding, add shard).
• Swap hardware type and/or hardware provider.

Candidate ARs related to messaging and enterprise application integration patterns
[13] are:

• Increase number of competing consumers (in message endpoint).
• Replace Publish-Subscribe Channel with (dynamic) Recipient List.
• Collapse filters (processors), merge pipes (channels).
• Change endpoint theme (consumption strategy).
• Change aggregation strategy, change aggregation algorithm.

When refactoring towards Service-Oriented Architecture (SOA) [18], both traditio-
nal, enterprise-scale SOAs and, more recently, emerging microservices architectures,
the following ARs are applicable:

• Expose component interface as a remote service a.k.a. introduce remote
façade with Data Transfer Object (DT) in a service layer.

• Replace scalar parameters with DTO in service interface (contract).
• Switch to service provider with different Service-Level Agreement (SLA) to

improve Quality of Service (QoS).
• Transition from normalized to partitioned/replicated master data to NoSQL

storage of transactional and reference data.

3. Architectural Refactoring in Cloud Application Development

In this section we move towards an AR Catalog for Cloud Migration (ARC). To do
so, we apply the concepts and content from the previous sections to cloud computing
and, to be more precise, Cloud Application Development (CAD) including the
modernization of software architectures with the goal of an x-as-a-Service cloud
deployment (public, private, community or hybrid cloud; x = infrastructure, platform,
or software). Two user stories for cloud application development and cloud migration
serve as our first step; next, we reference and revisit the ideal properties of cloud
applications from the literature. With this baseline established, we present cloud and
ARs and discuss their applicability.

3.1 Cloud User Stories and Ideal Cloud Application Properties

The goals of cloud application development and cloud migration can be specified as:

• As a developer and owner of a novel Web application who is unsure about
user reception and business value of this software, I would like to rapidly

deploy my application into production without having to invest into
hardware, data center space and operations staff (and be able to scale it up on
demand) so that I can get user feedback to improve my software and the
business model – without investing too many resources and taking
unnecessary financial risk. To do so, I need to know the characteristics of
cloud-native application architectures.

• As a developer who maintains and operates an existing application on behalf
of a client, I would like to move the on-premises production site into a cloud
so that I no longer have to worry about security updates and other admini-
strative tasks on the operating system and the middleware level – and my
client has to spend less on operations, which frees resources to develop new
features. To do so, I need to find out how my application architecture has to
be refactored to be ready for the cloud (first and foremost, it should be able
to run in the cloud; as a second step, it should take advantage of cloud
features such as elasticity).

We refer the reader to Cloud Computing Patterns book and website, as well as
supporting presentations, for the IDEAL cloud application properties (cloud
refactoring goals): isolated state, decomposition/distribution, elasticity, automated
deployment, and loose coupling [7].

3.2 Patterns of Enterprise Application Architecture (PoEAA) Scoring

In [10] from 2003, a number of patterns for layered enterprise applications are
described; most of these patterns continue to be relevant today. Table 5 evaluates
selected patterns with respect to their cloud affinity (indicated by the IDEAL
properties references in Section 3.1):

Table 5. Patterns of Enterprise Application Architecture (PoEAA) and ideal CAD properties.

PoEAA Pattern Suitability for Cloud Comment (impact on IDEAL properties)
Client Session
State

Yes and no As good or bad as in traditional deployment
(security?)

Server Session
State

No (I in IDEAL
violated)

Also hinders scale out

Database
Session State

Yes Can use DB (e.g. NoSQL)

Model-View-
Controller

Yes (with persistent
model)

Web frontends are cloud-affine

Front Controller Yes (Web frontends) See above
Page Controller Yes (Web frontends) See above

Application
Controller

Yes (Web frontends) See above

other
Presentation
Layer Patterns

Yes (Web frontends) See above

Transaction
Script

Yes Procedures should be self-contained (stateless
interactions)

Domain Model Depends on
complexity of domain
model

Object tree in main memory might limit scale out
(and database partitioning)

Table Module No or implementation
dependent

Big data sets problematic unless partitioned (e.g.
map-reduce)

Service Layer Yes SOA and REST design principles should be
adhered to, e.g. no object references in domain
model, but only instances of Data Transfer Object
in interface (larger discussion required)

Remote Façade Yes Can be introduced for cloud enablement of
existing solutions; can wrap calls to Platform-as-
a-Service (PaaS) provider to support
maintainability and portability

Active Record Limited Good when RDB exists in cloud or when records
have simple structures; complex structures can be
difficult to handle for NoSQL storage (mapping
need)

Row Data
Gateway

Yes Fits scale out

Table Data
Gateway

No or implementation
dependent

Big data sets problematic unless partitioned (e.g.
map-reduce)

System
Transaction

Depends on cloud
storage capabilities
(NoSQL?)

Larger discussion required (CAP BASE vs. ACID
etc.)

Business
Transaction

Yes If cloud design best practices are adhered to
(statelessness etc.)

This evaluation leads to the identification of required cloud refactorings, which we
introduce and outline in the next subsection. For instance, Server Session State is no
longer recommended when deploying an application to the cloud; it prevents the
presentation layer to be scaled out properly (which corresponds to the “I” and “E”
properties in IDEAL). In response, an AR called “Move State to Database” is
introduced (see Table 6 in the following subsection).

3.3 Architectural Refactorings (ARs) in Cloud Application Development

Table 6 identifies cloud ARs in various categories. The names of the ARs are self-
explanatory (just like the names of code refactorings in books and development tools).
The categories use service and deployment models as defined in [7], but also quality
attributes (which typically appear in architectural smells) to foster user orientation.

Table 6. Cloud Architectural Refactorings.

Category Refactorings (1) Refactorings (2) Refactorings (3)

IaaS Virtualize Server Virtualize Storage Virtualize Network
IaaS, PaaS Swap Cloud Provider Change Operating

System
Open Port

PaaS “De-SQL” “BASEify” (remove
”ACID”)

Replace DBMS

PaaS Change Messaging
QoS

Upgrade Queue
Endpoint(s)

Swap Messaging
Provider

SaaS/application Increase Concurrency Add Cache Precompute
Results

SaaS/application See [7] and [20] See [17] See [9]
Scalability Change Strategy

(Scale Up vs. Scale
Out)

Replace Own Cache
with Provider
Capability

Add Cloud
Resource (xaaS)

Performance Add Lazy Loading Move State to
Database

Communication Change Message
Exchange Pattern

Replace Transport
Protocol

Change Protocol
Provider

User management Swap Identity and
Access Management
(IAM) Provider

Replicate Credential
Store

Federate Identities

Service/deployment
model changes

Move Workload to
Cloud (use XaaS)

Privatize
Deployment,
Publicize
Deployment

Merge
Deployments (Use
Hybrid Cloud)

An additional AR on the business level would be to “switch from flat rate to usage-
based service billing (to support elasticity and cost-efficiency)”. All of these ARs can
be represented as instances of the task-centric template introduced in the previous
section; e.g. the tasks to introduce a cache include deciding on a lookup key and clean
up strategy, distribution, etc. We have identified and named, but not fully described
(in the template, that is), a number of additional ARs for cloud application design.

4. Related Work

Architectural Refactoring (AR) has been suggested almost a decade ago, but
regrettably not been adopted much in research and practice since then.

M. Stal was first to blog and present on architecture refactoring [22], providing
motivation and a pattern-oriented view as well as a discussion. In his OOPSLA 2007
tutorial, for instance, he presented the first catalog of architectural refactorings, which
he recently updated in a book chapter [23]. He uses a standard pattern format
originating from [4] to document his ARs, which include Breaking Dependency
Cycles and Splitting Subsystems. In [23], he also clarifies the difference between
reengineering and refactoring, and lists twelve architectural smells, including Unclear
Roles of Entities and Dependency Cycles.

In 2009, D. Garlan introduced the concept of architectural mismatch that compares
to our notion of architectural smells [11]. G. Fairbanks drew a connection between
architecture design and risk management and connects software architecture design

with agile practices. He used the evolution of the Netflix software as an example to
motivate the need for architectural refactoring [7].

Since 2004, the AKM community has established a decision-centric view on
software architecture. AKM contributions include metamodels, templates, methods,
and tools as well as knowledge bases that compile recurring decisions, e.g., in SOA
design [1,29]. In the context of AR, the AKM notion of a decision backlog is
particularly interesting, as well as the concept of legacy decisions; such decisions may
cause architectural smells and have to be revisited when applying ARs (as shown in
the Doodle example). The decision backlog informs architects about the ADs that still
have to be made (or, in the context of AR, be revisited); if such information is
included in the decision backlog, it can help to keep track of technical debt.

In service-oriented computing, a number of methods and patterns have been
proposed; typically, such approaches extend existing general-purpose ones. None of
the existing techniques leverages a task-centric refactoring metaphor; in our own
previous work, we have investigated decision-centric forward engineering of SOAs
and cloud applications [29,30]. In cloud computing and cloud migration, no notion of
architectural refactoring exists either (to the best of our knowledge). Patterns have
been captured, as well as methods and tools to find and use them [8,24]; pattern-
centric cloud migration approaches exist as well.

Since our architectural refactoring template is based on architectural decisions and
also references patterns (e.g., in solution sketches and as conceptual decision options),
these approaches are complementary to ours; AR catalogs can reference such existing
work if it is available publicly (e.g. in the form of online pattern catalogs).

5. Discussion and Outlook

Architectural decision making and architectural refactoring are key responsibilities of
software architects that are underrepresented in today’s methods and tools. While
code refactoring is a mainstream agile practice and progress has been made in
developing methods and tools around architectural decisions, architectural refactoring
has not been studied much recently (after early work in 2007 and 2008).

This paper picked up the early work on architectural refactoring and gave a task-
centric definition of the term architectural refactoring (rather than a structural one
based on pattern templates). It then introduced a quality story template that identifies
potential architectural smells and an architectural refactoring template that lists the
architectural decisions to be revisited as well as the design and development tasks to
be conducted when an architectural refactoring is applied. The article used De-SQL as
an example of an architectural refactoring as applied at Doodle, as well as two more
common general-purpose architectural refactorings (Introduce Cache, Move
Responsibility). The architectural refactoring template additionally has been validated
by applying it to ten additional architectural refactorings (some of which were also
presented in this paper) and implementing a tool prototype that can expose this AR
content. Existing enterprise application architecture patterns were scored according to
their cloud affinity; cloud architectural refactorings were identified (based on two
cloud user stories).

With the task-centric representation suggested by the template and the example in
this article, ARs provide an opportunity for cross-community collaboration, e.g., a)
architecture and development: AR execution may involve one or more code
refactorings, which have to be stitched together), and b) architecture and project
management: AR descriptions that are organized according to the AR template can be
used as planning tasks, and the need for architectural refactorings is an expression of
technical debt and c) AR and operations/maintenance (DevOps, or, more precisely
ArchOps).

In the future, we hope for additional domain- and style-specific AR catalogs to
appear, e.g. for banking/financial services software, game development or DevOps.
We plan to document additional cloud ARs and other domain-specific ARs ourselves
and have them reviewed e.g. through writer’s workshops at patterns conferences. The
current catalog as presented in this paper does not claim to be complete; its purpose in
the context of this paper is to illustrate our concepts (i.e., the AR template, quality
stories, pattern scoring), and to establish a vision for domain-specific AR catalogs.

An open question that remains is how to execute ARs – are templates and catalogs
good enough as knowledge carriers or are tools more appropriate? A Web-based
delivery of architectural knowledge has a lot of appeal/potential (collaborative
knowledge engineering and maintenance). Code refactoring started with a book and
formal groundwork; refactoring tools e.g. in Eclipse were developed much later after
content and theory had been established and experience had been gained. Any AR
tool support would need to tie in with modelling tools supporting UML or architecture
description languages. A prototype of such tool is currently under development.

Finally, recommended practices for AR capturing are desired, similar to pattern
languages for patterns authors. These practices would explain how to come up with
good names for ARs, how deep to document ARs, how to group and link ARs, etc.
when instantiating the AR template proposed in this paper.

References

1. Ali Babar, M., Dingsøyr, T., Lago, P., van Vliet, H. (eds.), Software Architecture
Knowledge Management: Theory and Practice, Springer-Verlag, 2009.

2. Bass, L., Clements, P., Kazman, R., Software Architecture in Practice, Second Edition.
Addison Wesley, 2003.

3. Booch. G., On Design,
https://www.ibm.com/developerworks/community/blogs/gradybooch/entry/on_design

4. Buschmann F., Meunier R., Rohnert, H., Sommerlad, P., M. Stal, M. Pattern-Oriented
Software Architecture – a System of Patterns. Wiley, 1996.

5. Cohn, M., User Stories Applied, Addison Wesley, 2004.
6. Doodle Blog, Doodle’s Technology Landscape,

http://en.blog.doodle.com/2011/04/14/doodles-technology-landscape/ and
http://en.blog.doodle.com/2013/11/18/doodles-technology-landscape-2

7. Fairbanks, G., Architecture Refactoring. http://rhinoresearch.com/content/architecture-
refactoring

8. Fehling, C., Leymann, F., Retter R., Schupeck, W., Arbitter, P., Cloud Computing
Patterns, Springer 2014.

9. Fowler M., http://martinfowler.com/bliki/DefinitionOfRefactoring.html

10. Fowler, M., Patterns of Enterprise Application Architecture. Addison Wesley, 2003.
11. Garlan, D., Allen, R., Ockerbloom, J., Architectural Mismatch: Why Reuse Is Still So

Hard, IEEE Software, http://www.computer.org/csdl/mags/so/2009/04/mso2009040066-
abs.html

12. Höllwarth, T. (ed)., Migrating to the Cloud, http://www.cloud-migration.eu/en.html
13. Hohpe, G., Woolf B., Enterprise Integration Patterns. Addison Wesley, 2004.
14. ISO/IEC/IEEE, Systems and software engineering – Architecture description,

ISO/IEC/IEEE 42010:2011(E), Dec. 1 2011
15. Jamshidi, P., Cloud Migration Patterns: A Multi-Cloud Architectural Perspective,

http://de.slideshare.net/pooyanjamshidi/cloud-migrationpatterns
16. Josuttis, N. SOA in Practice, O'Reilly Media, 2007.
17. Kelly, F., AWS Migration Patterns, http://java.dzone.com/articles/aws-migration-patterns
18. Kerievsky, J., Refactoring to Patterns, Addison Wesley, 2014.
19. Kruchten, P., The 4+1 View Model of Architecture, IEEE Software, Volume 12, Number

6, November 1995
20. Kruchten, P., The Frog and the Octopus: a Conceptual Model of Software Development,

http://arxiv.org/ftp/arxiv/papers/1209/1209.1327.pdf
21. Rozanski, N., Woods, E., Software Systems Architecture: Working With Stakeholders

Using Viewpoints and Perspectives, Addison Wesley, 2005Stal M., Refactoring Software
Architectures, in: A. Babar, A: W: Brown, I. Mistrik (Eds.), Agile Software Architecture,
Morgan Kaufman, 2014.

22. Stal, M., Software Architecture Refactoring, OOP and OOPSLA tutorials and blog post,
via; www.sigs.de/download/oop_08/Stal%20Mi3-4.pdf

23. Stal, M., Refactoring Software Architectures, in: A. Babar, A: W: Brown, I. Mistrik
(Eds.), Agile Software Architecture, Morgan Kaufman, 2014.

24. Strauch, S., Andrikopoulos, V., Karastoyanova, D., Leymann, F., Nachev, N., Staebler, A.,
Migrating Enterprise Applications to the Cloud: Methodology and Evaluation. In:
International Journal of Big Data Intelligence. Vol. 1(3), Perpetual Innovation Media Pvt.
Ltd., 2014

25. Widmer, T., Unleashing the Power of Refactoring, Eclipse Magazine, July 2006.
26. Wilkes, L., Application Migration Patterns for the Service Oriented Cloud, CBDI,

http://everware-cbdi.com/ampsoc
27. Zimmermann O., Architectural Refactoring – a Task-Centric View on Software Evolution.

IEEE Software, vol. 32, no. 2, March/April 2015
28. Zimmermann, O., Architectural Refactoring & Cloud Computing aus der Sicht des

Anwendungsarchitekten, OOP-Vorträge 2014. English presentation material available
from http://www.ifs.hsr.ch/Architectural-Refactoring-for.12044.0.html?&L=4

29. Zimmermann, O., Koehler, J., Leymann F., Polley, R., Schuster N., Managing
Architectural Decision Models with Dependency Relations, Integrity Constraints, and
Production Rules, Journal of Systems and Software, Elsevier. Volume 82, Issue 8, August
2009.

30. Zimmermann, O. Wegmann, L., Koziolek, H., Goldschmidt, T., Architectural Decision
Guidance across Projects, Proc. of IEEE/IFIP WICSA 2015.

