
Metrics for Architectural Synthesis and Evaluation
 – Requirements and Compilation by Viewpoint

An Industrial Experience Report

Olaf Zimmermann
The Open Group Distinguished (Chief/Lead) IT Architect, Institute for Software

University of Applied Sciences of Eastern Switzerland (HSR FHO)
Rapperswil, Switzerland

ozimmerm@hsr.ch

Abstract—During architectural analysis and synthesis,
architectural metrics are established tacitly or explicitly. In
architectural evaluation, these metrics are then consulted to
assess whether architectures are fit for purpose and in line with
recommended practices and published architectural knowledge.
This experience report presents a personal retrospective of the
author’s use of architectural metrics during 20 years in IT
architect roles in professional services as well as research and
development. This reflection drives the identification of use cases,
critical success factors and elements of risk for architectural
metrics management. An initial catalog of architectural metrics is
compiled next, which is organized by viewpoints and domains.
The report concludes with a discussion of practical impact of
architectural metrics and potential research topics in this area.

Index Terms— architectural metrics, architectural metrics
management, architectural reviews, enterprise information
systems, integration, patterns, viewpoints.

I. INTRODUCTION
 Software architects in product development and
professional services perform activities in three categories:
architectural analysis, architectural synthesis and architectural
evaluation [10]. Architectural Metrics (AMs) pertain to
artifacts created during architectural analysis and synthesis; in
architectural evaluation, these metrics are then consulted to
assess whether architectures are fit for purpose and in line with
recommended community practices and the architectural
knowledge that represents the state of the art in a domain (this
evaluation activity is complementary to assessing whether an
architecture meets the architecturally significant requirements
that came out of architectural analysis).
 In this experience report, I reflect on 20 years in IT
architect roles in professional services as well as research and
development to identify the AMs that I repeatedly applied
during this time. Some of these AMs are rather generic, while
others depend on the business context and the technical domain
the system under construction is concerned with. The reflection
yields (a) an identification of use cases, critical success factors
and elements of risk regarding AM Management (AMM) and
(b) a catalog of AMs organized by viewpoints and
domains/styles. It also highlights research areas and challenges.

II. SOURCES OF METRICS KNOWLEDGE AND EXAMPLE
 Let me first share selected project context information in
this section and then present an example to establish the roots
of the architectural metrics introduced in subsequent sections.

A. Context: Project Experience and IT Architect Roles
The first time I acted as Information Technology (IT)

Architect was in 1995, when I led the definition of a client-
specific solution architecture for a telecommunications network
management system together with a senior architect. Since
then, I served in various IT architect roles in professional
services and software product development from Subject
Matter Expert (SME) for certain technologies and platforms to
subsystem architect (application architect, integration architect)
to lead architect and technical project manager. The developed
software included middleware, code generators, and, primarily,
client/server Enterprise Information Systems (EIS). Some of
these EIS leveraged SOA concepts and Web services
technologies [23][24]. In recent years, my industrial research
and development projects focused on design and decision
making tools [20][21][22]; via action research and consulting
assignments, I contributed to additional EIS architectures.

Table 1 identifies the lower and upper boundaries of typical
project context information in the eight dimensions from [14].

TABLE 1. SAMPLE PROJECT CONTEXT DIMENSIONS

Dimension Research
Prototypes (Tools)

Enterprise-Scale Information
Systems

System size 1000 Source Lines
of Code (SLOC),
standalone
program

1 Mio. SLOC (and up), system of
systems with 20 and more backend
interfaces

System
criticality

None, thrown away
after experiment

Medium to high (no hard real time
requirements, but business critical
applications)

System age

New 10 years and more (up to 50-70
years for certain legacy
applications and interfaces)

Team
distribution

None Asia/Pacific, Europe, USA

Rate of change (Bi-)weekly
software releases;
startup mentality

e.g. government client: six months
for one iteration over use case
model; three years to go live with
Version 1 of an e-business solution

Pre-existence of
a stable
architecture

None Yes, e.g. IBM mainframe, Java
Enterprise Edition (JEE); in-house
frameworks at IT-savvy clients

Governance Self-organized,
agile practices

e.g. enterprise architecture
frameworks, Stage Gate Model
[19]

Business model n/a Fee-based (software solutions),
licensing (software products)

The table entries indicate significant project diversity; any
AMM approach and AM catalog must be able to deal with such
diversity (e.g., via profiling and other tailoring means). To
elaborate on the business model dimension, Table 2
differentiates between product and solution architects:

TABLE 2. TWO TYPES OF ARCHITECT ROLES AND THEIR DIFFERENCES

Aspect Product Architects
(working for vendor)

Solution Architects (in
professional services)

Business model Past: Software license
sales plus maintenance
fees (threat: open source)

Service fees (time and
material) or fixed price
contracts (software lot/craft)

Future: SaaS fees

Functional
requirements

From product manager
(top down), internal
innovation (bottom up)

From users, from sponsors
(top down), use cases or user
stories

Quality
Attributes
(NFRs)

Many profiles, generic or
flexible

Single set (unless client is a
software vendor and a
product architect is served)

Design method Many from waterfall to
agile (today)

IBM Unified Method
Framework, Unified Process,
agile practices

Deployment At customer, in cloud Data center of client, IT
outsourcer, cloud

Key
Performance
Indicators

Shipment schedule met,
software quality,
software sales

Client satisfaction,
workforce utilization

Competition External, internal Independent consultants
(freelancers), internal staff Open source project

B. Fictitious Enterprise Application Architecture
 PremierQuotes Inc. is an insurance company that acquired
DirtCheap Insurance, another fictitious insurance company,
and formed the PremierQuotes Group (PQG) to fulfill the
growth expectations of its stakeholders. Figure 1 shows a
simplified, but still realistic Enterprise Application (EA)
landscape at PQG comprising of three connected EAs; both
external interfaces and internal layer structure are shown from
a logical-functional point of view.
 PQG exposes its customer care, contract, and risk
management applications to three types of external and internal
human users, its customers, independent agents, and internal
back office staff. There are three user channels, a customer
self-service, an agent, and a back office channel. Each of these
channels supports one or more business activities initiated by
users: enquire, assess risk, calculate rate, sign contract, and
create policy. These activities jointly realize a customer
enquiry process. The applications work with a customer
database, a policy backend, and a government information
server, which appear in the system contexts of the applications.
The enterprise applications interact with each other. For
instance, the customer care application communicates with the
contract application (e.g., when processing an enquiry).
 The three physical tiers are the client tier, the mid-tier
hosting presentation, domain, and resource (data) access logic,
and the backend tier. World-Wide Web (WWW) infrastructure
connects the client tier with the mid-tier (over the Internet for
the customer self-service channel and the agent channel, over
an intranet for the back office channel).

Fig. 1. An enterprise information system landscape comprising of three
connected systems, organized according to the Layers pattern.

Traditional Enterprise Application Integration (EAI)
middleware is used to connect the mid-tier with the backend
tier. The client tier contains all application components directly
serving the users. Examples are Web browsers and rich client
applications running on Personal Computers (PCs) used by
customers, agents, and back office staff. The mid-tier
comprises of the three applications shown in the system
context diagram. These applications are logically layered into
presentation, domain, and resource (data) access logic layers.
Typical responsibilities of the mid-tier are input validation,
processing control, session state management, calculations, and
manipulations of enterprise resources. The backend tier stores
enterprise resources persistently and coordinates concurrent
access to the enterprise resources (i.e., customer profiles,
offers, and policies). This tier hosts database servers, but also
other systems which in themselves may be physically tiered,
but located external to the company or in another
organizational domain. The policy backend and the
government information server are examples.

An example of a recurring design issue is session state
management (e.g., think of a user session in the customer self-
service channel). The three top-level design options (patterns)
are client session state, server session state and database
session state [9]. Client session state scales well, but has
security and possibly performance problems; this does not
change when moving to a cloud platform. Server session state
uses main memory or proprietary data stores in an application
server (e.g., an HTTP session in a JEE servlet container); this
approach is no longer recommended when deploying to a cloud
due to scalability and reliability concerns. Finally, database
session state is well supported in many clouds, e.g., via highly
scalable key-value storages (NoSQL). This decision has to be
made or revisited when designing a cloud-native application;
while the decision outcomes may vary, the issues and options
to be considered stay the same (i.e., they recur). Multiple
instances of this decision may exist per project (e.g., in multi-
channel applications).

The PQG architecture serves as a running example in this
report. It aggregates many design facets from real projects.

III. REQUIREMENTS FOR ARCH. METRICS MANAGEMENT
Use cases. During my time in professional services and product
development, I defined and applied AMs to (a) make and
justify architectural decisions, (b) categorize design problems
and solutions regarding their business context and technical
complexity and (c) compare similar architectures. Ordering
these activities from the end of the project lifecycle to its start
and applying the terminology from [10], this experience can be
summarized in the following five AMM use cases:

1. Utilize metrics during architecture and design reviews
to define scope and to assess architectural fitness and
adherence to/deviation from recommended practices.
This is an aspect of architectural evaluation [10].

2. Indicate complexity and technical risk, e.g., to be used
as input to effort estimations and project management
work. This is an aspect of architectural synthesis [10].

3. Measure project progress on a technical level (also
during architectural synthesis).

4. Support architect during transition from design-time
quality attribute specifications to runtime Service
Level Agreements (SLAs) and contracts (still in
architectural synthesis).

5. Benchmark architectures in domain (business) context
[14] as a variant of architectural evaluation.

Critical Success Factors (CSFs). SWA metrics and metrics
management solutions (methods, tools) should ensure:

• Expressivity and elicitability. AMs should be able to
support the five AMM use cases effectively and
efficiently. It must be possible to obtain them from
software architecture documents and code with little
extra effort.

• Intuitivity. AMs should be self-explanatory: both unit
and unit of measurement as in physics must be defined,
value ranges should be specified. The AM semantics
should be defined at least informally (e.g., by way of
examples and counter examples).

• Unambiguity. AMs should be well defined and use
viewpoint and component/connector terminology, e.g.,
from IEEE 42010 [12], patterns books [6][9][11], a
recognized design method [17], or from the literature
about architectural styles (for domain-specific metrics).

• Sensitivity. Small changes in the architecture should
not lead to radically different AM values (just like
continuous functions in mathematics do not have gaps
and do not “jump”). AMs should not produce any
surprising and misleading analysis/evaluation results.

Elements of risk. Like most computer scientists, many
software architects have a natural affinity to numbers. Hence,
misuse and blind faith in AMS are primary risks for AMM.
Another risk is cheating (fraud): Metrics can be corrupted or

misguided (“do not trust any statistic you did not fake yourself”
is a popular quote, e.g., in economics). Hence, AM calibration
is required, e.g., based on a mature domain model, reference
architecture or pattern language. A resulting requirement for
AM researchers and tool developers is to carefully manage
expectations and to be candid about what can be achieved (i.e.,
what AMs can tell and cannot tell). They should recommend
complementary techniques such as agile communication and
collaboration tools in their AM usage manuals.

IV. GENERAL ARCHITECTURAL METRICS BY VIEWPOINT
This section presents AMs by Viewpoint (VP). The 4+1

VPs from [13] are used to structure the section with other VPs
blended in. These viewpoint models merely serve as organizing
principles here; the presented metrics are also applicable when
working with other viewpoint models.

Table 3 gives an overview, and the remainder of the section
then walks through the table entries (within the context of the
running example from the previous section). I limit the
compilation to the three to five most relevant AMs per VP.
Many more AMs could be identified; some of these candidates
are mentioned in the discussion in Section VI.

When possible, I will describe the AMs in the context of
the kinds of decision making process they supported. Since this
is an experience report and not a research paper presenting
scientifically validated results, certain gaps remain for some
elements in the AM compilation (subject/input to discussion).

Scenario VP (SVP). The SVP deals with the architecturally
significant parts of the functionality of the system under
construction. In object-oriented analysis, use cases specify the
functionality [4]; Non-Functional Requirements (NFRs)
eliciting Quality Attributes (QAs) [2] complement use cases.

 AM-S1: (a) Use Case Count and (b) Use Case Weight. My
first AM is the number of use cases (a), followed by (b) the
number of user-system interactions per use case. This metric is
an effort and risk indicator; however, sometimes a project with
1000 use cases is less complex (and risky) than one with 10 use
cases modelled; hence, sample use cases have to be studied to
make sure that the critical success factors from above are met if
this metric is used. Use case count and weight still are useful
complexity indicators; unusual numbers might indicate an
analysis smell or technical risk factor for the project.
 In our running example from the insurance industry, five
claims processing use cases are described (enquire, assess risk,
calculate rate, sign contract, and create policy); real-world
enterprise information systems may implement more than 100
such UCs. Use case modelling best practices recommend
around 10 user-system interactions per use case scenario;
longer scenarios should be split up to improve manageability of
the specification and flexibility of the design.

TABLE 3. SOFTWARE ARCHITECTURE METRICS BY VIEWPOINT

Architectural Metric (AM) Name Type (Unit of Measurement)

Scenario Viewpoint Number and weight of use cases
Number of secondary actors (and cadence of external interface connections)
Specificity and measurability of NFR/quality attribute specifications

Counter (1…1000)
Counter and score

Binary score
Logical Viewpoint Number of external interfaces and number of interface invocations

Number of components and connector per component
Counter
Counter

Development Viewpoint (out of scope of this report) n/a
Process Viewpoint

Process Counter
Process Coordination Means
Interprocess Communication (IPC) and Remote Call Counter
Application State and User Session State
Workload Profile

Counter
Index/Score

Counters
Size (Bytes)

Aggregated (Complex)
Physical Viewpoint Tier Counter

Clustering Index
Counter

Index/Score
Architectural Decision Viewpoint Number of architecture design problems solved

Number of options considered per problem
Counter
Counter

Information Viewpoint Data model size and structure (e.g., number of entities and entity relationships)
Transaction management profile, e.g. number of system transactions and their
size/duration

Index/Score
Aggregated (Complex)

Patterns Metrics
(here: POSA, PoEAA, EIP books)

E.g. number of layers, number of controllers in MVC pattern
E.g. length and complexity of EIP integration flows

Counter
Index/Score

Domain- and Style- Specific Metrics
(JEE, SOA, MOM, RDB)

E.g. number of servlets, number of message channels
E.g. number of SQL tables, queries, foreign key relationships

Counter
Counter

 AM-S2: Secondary Actor Count. Another AM in the SVP is
the number of secondary actors in the use case: A high number
often indicates that many external interfaces have to be
consumed, which causes integration and test efforts and also
adds to the technical project risk. I use this metric both during
architectural synthesis and during architectural evaluation (e.g.,
to find out whether all integration requirements can be satisfied
by the proposed/implemented architecture).
 In the PQG example, three backend systems are shown,
which can be seen as secondary actors; in the
telecommunications case study [23], we dealt with 20 such
systems; sometime, more than 100 or even 1000 systems have
to be integrated (e.g., due to regulatory compliance
requirements, or advanced reporting and archiving use cases).

 AM-3. Smartness of NFRs. The mere number of QAs does
not seem to be an expressive, intuitive and unambiguous metric
(to reference three CSFs from Section III). However, an AM I
have begun to use in recent years is a binary QA score
answering two questions: (1) Is the NFR/QA specific enough
(in terms of its context)? (2) Is the NFR/QA measurable? This
is a simplified, lean version of Quality Attribute Scenarios
(QAS) [2], which is almost as effective as full QASs according
to my experience in consulting (and teaching). The SMART
goal approach is often used in people and project management,
and I adopted its first two facets (properties) for NFR/QA
analysis work. Table 4 gives some examples of SMART and
less SMART NFRs.

Logical VP (LVP). The LVP pertains to the functional
decomposition of the system under construction (partitioning);
the architectural elements that can be found in the LVP include
components and connectors on varying levels of abstraction
and refinement. Hence, the LVP AMs deal with these concepts.

AM-L1: (a) Number of External Interfaces and (b) Number
of Invocations per Interface (both inbound and outbound). This
AM is very important for effort estimation, risk management
(from a course on architectural thinking: “external data and

communication makes or breaks your project”); it can also be
used for performance engineering and the definition and
monitoring of subsystem-level Service Level Agreements
(SLAs). Appropriate numbers vary by industry and application
type; it is not possible to give generic recommendations here.
 TABLE 4. SMART NFRS/QAS (EXAMPLES)

NFR/QA Example Specific?
(Rationale)

Measureable?
(Rationale)

“In claims processing use case
(agent channel), sub-second
response times is required for
95% of the agent requests.”

Yes Yes

“The logger component has to
be highly maintainable as it will
be reused many times”

Yes No (how to verify
that requirement is
satisfied?)

“24x7 up time” No (sub-
systems?)

Yes (but not realistic)

“Our software has to be very
easy to use.”

No (which
software?)

No (what does “very
easy” mean? who
judges this?)

In the PQG example, there are three interfaces, which
shown traffic in the order of a few transactions/requests per
second. In online trading or control systems, hundreds or
thousands of messages per second have to be processed per
interface (these extreme differences indicate diversity).

 AM-L.2: (a) Number of Components and (b) Number of
Connectors per Component. This metric will only produce
meaningful data if the notion of components and connectors is
defined and agreed upon (in terms of their abstraction level and
design method employed); if done properly, it can indicate the
amount/degree of cohesion and coupling in the componentry
(LVP). While this AM is hard to standardize, I typically review
a carefully selected subset of components and component
descriptions to get a feel for the practices in a development
organization (and I adjust my metrics accordingly). If no
examples from previous projects or enterprise architecture

management group are available, I define them myself (and
document my assumptions about component granularity and
identification, specification, realization method).
 In the PQG example, the layered LVP architecture in
Figure 1 can be decomposed into 18 components.

Development VP. This VP is out of scope of this report – not
because it is not important from an architect’s point of view
(faithful to the organizational pattern “architect implements”),
but because it is well understood and covered elsewhere in the
literature, e.g., object-oriented code metrics are elicited in [15].

Process VP (PVP). The PVP focusses on system dynamics,
including operating system processes and their coordination,
but also application workflows.

 AM-P1: Number of Operating System Processes. This
metric is useful for capacity planning: it can indicate hardware
requirements, as well as service management needs (e.g.,
monitoring, configuration management, application security).

AM-P2: Process Coordination Means. This metric is an
aggregated one, counting the use of parallel programming
concepts, e.g., number of mutexes and semaphors, number of
locks set and unset per time interval, etc. Many competing
system qualities are affected: if too little coordination is done,
accuracy and robustness will be compromised; if the solution is
over-engineered and/or if inadequate means are chosen, the
system becomes slow and hard to test and maintain over time.

AM-P3: (a) IPC Index and (b) Remote Call Counter. The
number of open Interprocess Communication (IPC) features
(e.g., TCP/IP socket connections, queues, shared memory,
operating system pipes) and the number of message
sent/received over these connections is important to know
when for IT infrastructure design, e.g., in response to
scalability requirements. According to M. Fowler, the best
remote call is one you do not make [9] (which is easier said
than done).

AM-P4: (a) Size of Application State and (b) Size of User
Session State, as well as access profiles and state changes over
time are important to know about when designing for
scalability and robustness. A detailed description of this AM is
out of scope here due to space constraints. Refer to [8] for a
more detailed coverage of state management options in the
context of cloud computing and Section V for information on
HTTP sessions.

AM-P5: Workload Profile. The workload profile is an
aggregated metric that should include number of requests per
second (i.e, end user requests sent and/or responded to, both in
normal operations and in failure situations) as well as an
application’s hardware footprint (storage and CPU demand). A
detailed description of this AM is out of scope here due to
space constraints. Five workload patterns commonly occurring
in cloud solutions are described in the literature [8].

Deployment VP a.k.a. Physical or Operational VP (OVP).
The OVP deals with the assignment of software components to
hardware nodes and other IT infrastructure elements (network,
storage devices) and the resulting IT infrastructure topology.

AM-O1: Tier Counter. This is a simple measurement for the
distribution of processing logic and storage units – more

complex scores might be more expressive, but it is not obvious
how such advanced AMs could be obtained (so that they still
meet the CSFs from Section III).
 The tier design has a large impact on performance (latency
vs. throughput), and also infrastructure and network security. In
the PQG example, a three-tier structure is used. This is
common in EIS design today; many 2-tier systems exist as
well.

AM-O2: Clustering Index. This AM indicates the amount of
redundancy in the deployment (i.e., the ratio of deployment
units and logical components to nodes that host these
deployment units). Clustered deployments are much more
difficult to design, test, troubleshoot and modernize than
standalone ones, but also more robust and performant (if set up
properly). A clustering index of 0 means that there is no
redundancy in the deployment and the value 100 means that
each component is deployed exactly twice. The metrics has to
be defined and measured per subsystem (or even component),
with detailed arithmetic to be defined. All extremes from 0% to
100% redundancy occur in practice, depending on availability,
failover and scalability requirements.

Architectural Decision VP (DVP). This VP is not part of the
4+1 model, but has been conceptualized by the Architectural
Knowledge Management (AKM) research community since
2004. It deals with design rationale. If Architectural Decisions
(ADs) are made explicit, two AMs for AKM are:

 AM D-1: Architecture design problems solved, e.g., number
of decisions made vs. number of decisions documented.

 AM D-2: Options considered per problem, e.g., patterns or
technologies or assets.

 AKM metrics are subject to ongoing research [22]. The
SOAD project reported on AKM metrics by example [20].

Information VP (IVP). This VP also is not part of the 4+1
model, but introduced in [18]. It deals with data representation
and management.

AM I-1: (a) Data Model Size and (b) Data Model Structure.
This AM may include the number of databases/schemes,
number of database tables, number of columns and rows per
table, number of concurrent clients, etc. These numbers impact
performance and maintainability as well as migratability.

 AM I-2: (a) Transaction Volume and (b) Transaction
Weight. This AM covers the number of system transactions
and scope of their boundaries, the amount of SQL statements
executed within the transaction, and their execution time.

 Descriptions of such metrics and recommended values can
be found in the database and transaction processing literature.

V. DOMAIN-SPECIFIC METRICS (FRAMEWORKS AND PATTERNS)
Let me now transition from platform-independent to

platform-specific metrics. Anything that appears in the domain
model or pattern language for a technology could be measured,
for instance, the key concepts in a framework or the
components in a solution sketch. For instance, when integrating
systems over the Web with RESTful HTTP, the number of
resources and their nesting structure are of interest (as well as

the number of states in finite state machine specifying the valid
state transfers and the number and type of resource
representations along with their media types and link types).

Patterns books. This subsection lists some key metrics that
can be obtained from patterns that I applied on the projects. I
do not aim for completion here, but highlight a few examples
that I find particularly relevant, illustrative and representative.

AM POSA-1: Layers Usage. In the Layers pattern [3], the
number of layers, the number of components per layer, the
number of calls from layer to layer as well as the number of
layering violations concern the architect (and maintainers of
the system) due to their impact on maintainability.

AM PoEAA-1: MVC Scores. In the Model-View-Controller
Pattern (MVC) that governs the design of many contemporary
presentation layers, the number of controllers, the number of
views per controller, and the size/weight of the model instances
are relevant AMs. These numbers can help identify
performance and scalability bottlenecks in the architecture and
its realizations, and also indicate storage requirements.

JEE/SOA. When working with reference architectures such as
Java Enterprise Edition (JEE) and architectural styles such as
Service-Oriented Architecture (SOA), a number of style- and
technology-specific AMs can be defined. I can only name the
most relevant of these style- and domain-specific AMs here.

AM-JEE. JEE AMs include number of servlets and JSPs
per Web container, EJBs per JEE container, EJB containers per
application server, number of database connections and data
sources number of database connections, connection pools and
caches; size and structure of configuration elements, properties,
e.g., in http.conf or web.xml files; number and cadence of
backend connections vs. connections to peer systems (see PQG
example in Section II). If other container technologies are used,
these metrics can be adjusted, e.g., the number of Spring beans
in a Spring container can be counted. Examples of typical
component numbers are 10 to 30 servlets and EJBs per
container; and 5 to 10 to 15 containers per server; HTTP
sessions should only contain a few KB due to scalability issues.
JMX MBeans (e.g., visible in JConsole) also qualify as AMs.

The reasons for defining and using these metrics are: they
give an idea about system management needs, the required
space on the heap, the startup times for middleware that has to
process configuration files and annotations (which is often
done via introspection/reflection, which are resource-intense
and time consuming activities for a language runtime such as
the Java virtual machine).

 AM-SOA1. (a) Number of Service Endpoints and (b) Weight
of Services (service granularity). Service metrics may also
include: interface breadth and interface depth both from a
technical point of view and a business point of view, and
service versioning frequency. Metrics for message exchange
formats such as JSON and XML metrics are applicable well.

AM-SOA2. (a) Number and (b) Complexity of Service
Composition Workflows, including average execution time,
number of process instances, and number of compensating
events. The business process management community defines
such metrics (e.g., in process mining).

EIP/MOM. Enterprise Integration Patterns (EIP) [11] describe
asynchronous, loosely coupled communication via Message-
Oriented Middleware (MOM). EIP/MOM metrics include
number of application clients/endpoints (e.g., number of
competing consumers), number of queues and messages in
queue, rate of message production, rate of consumption;
number of channels, e.g., n+m vs. n*m for EAI point-to-point
vs. hub-and-spoke. Important AMs for the publish-subscribe-
pattern are number of subscribers and number of topics.
 EIP/MOM metrics used in integration flow design include
length of routes and the number and complexity of message
transformations. The nesting level of XML and JSON
structures and the ratio of metadata vs. payload is also worth
calculating and keeping track of (e.g., an overhead of 4 to 20 is
attached to SOAP/HTTP in comparison to raw data to be
exchanged according to my experience; I regularly enquire
about this number when reviewing Web services solutions).

RDBMS/SQL. The following AMs have proven to be useful
for me (among others): number of entities (on conceptual level)
and tables (on logical/physical level), cardinalities (i.e.,
multiplicities) of relationships in entity-relationship diagrams
or domain models (with average and extreme instantiations),
number of database triggers and foreign keys, number of SQL
statements defined and executed per subsystem/user service.

VI. DISCUSSION
Missing metrics. One key aspect in evaluating architectures is
whether it is appropriate for the architecturally significant
requirements. None of the metrics compiled in this report really
try to measure this; they can be only used in the sense of best
practices. As a consequence, they are only useful if the user
knows how to interpret them; domain-specific architecting
experience is required for that.

One could also measure the component density in the LVP,
e.g., the scope and content of classes-responsibilities-
collaborations cards (subject to discussion). Regarding PVP
AMs, one can also think of a performance tuning score
capturing number and size of caches, caching performance
(successful lookups vs. unsuccessful lookups). Other PVP AMs
might deal with lifecycle events (start and stop of processes,
retries, database commit vs. rollback, compensation routines
fired, exceptions thrown and caught (per subsystem, per layer).

It is subject to discussion whether Strategic Outsourcing
(SO), IT service management and DevOps metrics also belong
to the OVP viewpoint, e.g., number of images, management
scripts, help desk tickets, audit log records, etc. These AMs can
also be seen as belonging to a separate management viewpoint
(or perspective in Rozanski/Woods terminology [18]). The
same holds for security metrics, including (but not limited to)
connection attempts that were rejected, unsuccessful logins,
and other security incidents and events. When reviewing
architectures from an OVP, I sometimes also enquired about
(or counted myself): number of firewalls by type, number of
locations and network zones, number of nodes per location,
number of deployment units per node, number of cluster
members. Hardware specification as used in capacity planning
can also be collected: CPU, RAM, disk, network adapters, etc.

Value and maturity. According to my experience, AMs can
be a valid and powerful tool – if handled with care (see

elements of risk presented in Section III and usage examples
presented throughout Section IV). The presented metrics
served me well to prepare reviews (e.g., with questionnaires
and checklists).
 Faithful to the nature of an industry experience report, the
presentation of the metrics was subjective and anecdotal; I did
not contribute validated research results in this article.
Therefore, the presented metrics are not fully flushed out yet
and do not satisfy all critical success factors from Section III
yet. AMM research will be required to do so.

Feasibility. An initial reaction to my AM compilation might be
that it has too many elements – in practice, it might be too hard
to collect and to interpret all of these AMs. However, a subset
can be chosen as needed (tailoring). Custom catalogs (profiles)
can be defined; the purpose of my collection is to serve as a
discussion starter and practitioner input to the workshop.
 From my point of view it is an open research question how
the usefulness (or the benefit for a specific question) of
architectural metrics in general could be evaluated. It would
also be worth to investigate the architectural decisions that the
AMs they feed into; possibly there are there bad combinations
of AM values that can serve as architectural smells [25].

VII. SUMMARY AND OUTLOOK
In this article I reported in on my past and present usage of

architecture metrics. I identified use cases, critical success
factors and elements of risk for Architectural Metrics
Management (AMM) and presented examples of useful metrics
organized by viewpoints and domains. As such, this report
provides food for thought for the workshop discussions, and
intends to serve as input to an AMM research roadmap.
Hopefully the use cases and critical success factors as well as
the metrics compilation by viewpoint and domain, as well as
the running example (a fictitious, but realistic enterprise
information system landscape), will help researches to come up
with automated approaches to metrics gathering, visualization
and analysis, and may also help them to validate their research.

Additional metrics for other domains and styles can be
identified, e.g., for distributed control systems, cloud
computing, or microservices. In my own future work, I will
continue to focus on the Architectural Decision Viewpoint,
including some architectural metrics for it. Another promising
direction is tool support for making non-functional require-
ments SMARTer (i.e., more specific and measurable). Finally,
the interface between architectural synthesis and project
management as well as architectural refactoring practices are
additional areas that can benefit from architectural metrics.

REFERENCES
[1] M. Ali Babar, T. Dingsøyr, P. Lago, H. van Vliet (eds.), Software

Architecture Knowledge Management: Theory and Practice, Springer-
Verlag, 2009.

[2] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice,
Second Edition. Addison Wesley, 2003.

[3] F. Buschmann, R. Meunie, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture – a System of Patterns. Wiley,
1996.

[4] A. Cockburn, Writing Effective Use Cases. Addison-Wesley, 2001.
[5] P. Eeles, P. Cripps, The Process of Software Architeting, Addison

Wesley, 2009.
[6] E. Evans, Domain-Driven Design. Tackling Complexity in the Heart of

Software. Addison Wesley, 2003.
[7] G. Fairbanks, Just Enough Software Architcture: A Risk-Driven

Approach. Marshal and Brainerd, 2010.
[8] C. Fehling, F. Leymann., R. Retter, W. Schupeck, P. Arbitter, Cloud

Computing Patterns, Springer 2013.
[9] M. Fowler, Patterns of Enterprise Application Architecture. Addison

Wesley, 2003.
[10] C. Hofmeister, P. Kruchten, R. Nord, J. H. Obbink, A. Ran, P. America,

A General Model of Software Architecture Design Derived from Five
Industrial Approaches. Journal of Systems and Software 80(1), Else-
vier, 2007.

[11] G. Hohpe, B. Woolf, Enterprise Integration Patterns. Addison Wesley,
2004.

[12] ISO/IEC/IEEE, Systems and software engineering – Architecture
description, ISO/IEC/IEEE 42010:2011(E), Dec. 1 2011

[13] P. Kruchten, The 4+1 View Model of Architecture, IEEE Software,
Volume 12, Number 6, November 1995, pp. 42-50.

[14] P. Kruchten, The frog and the octopus: a conceptual model of software
development, http://arxiv.org/ftp/arxiv/papers/1209/1209.1327.pdf

[15] M. Lanza, R. Marinescu, Object-Oriented Metrics in Practice – Using
Software Metrics to Characterize, Evaluate, and Improve the Design of
Object-Oriented Systems, Springer, 2006.

[16] C. Manteuffel, D. Tofan, H. Koziolek, T. Goldschmidt, P. Avgeriou:
Industrial Implementation of a Documentation Framework for
Architectural Decisions. Proc. Of IEEE/IFIP WICSA 2014, IEEE
Computer Society, Los Alamitos (2014), pp. 225-234.

[17] Open Unified Process (OpenUP), http://epf.eclipse.org/wikis/openup/
[18] N. Rozanski, E. Woods, Software Systems Architecture : Working With

Stakeholders Using Viewpoints and Perspectives, Addison Wesley,
2005.

[19] The official site of the Stage-Gate®, http://www.stage-gate.com/
[20] O. Zimmermann, J. Koehler, F. Leymann, R. Polley, N. Schuster,

Managing Architectural Decision Models with Dependency Relations,
Integrity Constraints, and Production Rules. Journal of Systems and
Software, Elsevier. Volume 82, Issue 8, August 2009, pp. 1249-1267.

[21] O. Zimmermann, C. Miksovic, J. Küster, Reference Architecture,
Metamodel and Modeling Principles for Architectural Knowledge
Management in Information Technology Services. Journal of Systems
and Software, Elsevier. Volume 85, Issue 9, Sept. 2012, , pp. 2014-2033.

[22] O. Zimmermann, L. Wegmann, H. Koziolek, T. Goldschmidt,
Architectural Decision Guidance across Projects, Proc. of IEEE/IFIP
WICSA 2015, , IEEE Computer Society, Los Alamitos (2015).

[23] O. Zimmermann, V. Doubrovski, Grundler, K. Hogg, Service-Oriented
Architecture and Business Process Management in an Order
Management Scenario: Rationale, Concepts, Lessons Learned. Com-
panion to the 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications
(OOPSLA '05). ACM, 2005, pp. 301-312.

[24] O. Zimmermann, S. Milinski, M. Craes, F. Oellerman., Second Gen-
eration Web Services-Oriented Architecture in Production in the Fi-
nance Industry, Companion to the 19th Annual ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA '04). ACM, 2004, pp. 283-289.

[25] O. Zimmermann, Architectural Refactoring – A Task-Centric View on
Software Evolution. IEEE Software, Volume 32, Issue 2, March-April
2015, pp. 26-29.

	I. Introduction
	II. Sources of Metrics Knowledge and Example
	A. Context: Project Experience and IT Architect Roles
	B. Fictitious Enterprise Application Architecture

	III. Requirements for Arch. Metrics Management
	IV. General Architectural Metrics by Viewpoint
	V. Domain-Specific Metrics (Frameworks and Patterns)
	VI. Discussion
	VII. Summary and Outlook
	References

