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Abstract
Automated market making for crypto tokens is an extremely attractive and
efficient way to establish decentralized exchanges. An inevitable prerequisite for
this type of market is the willingness of participants to provide liquidity. Except in
the case of two correlated pairs, providing liquidity is often sub-optimal. In fact,
one often faces significant opportunity cost commonly referred to as impermanent
loss. Prevailing transaction fee levels, even with levered positions, are often
insufficient to compensate for the opportunity costs incurred. Marketability and
exchangeability are essential prerequisites for attributing value to many crypto
tokens. Therefore, when issuing fiat tokens for the viability of intriguing business
models, one ends up with the chicken-or-the-egg causality dilemma; how to
achieve sustainable incentives to the liquidity provision for an abstract good
whose intrinsic value is defined solely by that liquidity system? This article derives
and discusses useful formulas for the quantitative risk management in the context
of automated market makers. In addition, order size and pool size dependent
transaction costs are proposed that may incentivize the desired level of liquidity.
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1 Introduction
Central limit order books (CLOBs) are not ideal for decentralized exchanges (DEXs),
which run on blockchains. The gas fees tend to be prohibitively expensive for this
setup which usually has an ongoing stream of adjustments by the market makers.
Consequently, automated market makers (AMMs) are an important feature of DEXs.
Currently, these are typically implemented as constant function market makers
(CFMM), which calculate an invariant value from the two or more token elements in
the DEX; see also [1], and [2] for market maker designs beyond constant functions.
CFMMs usually hold liquidity pools in the traded tokens, and these pools act as
counterparties to anyone interacting with the DEX. Arbitrageurs would then make
profitable follow-up trades, which reset the liquidity pools to the current market price.
DEXs typically charge a transaction fee1 of 0.15%− 0.35% on trades, and some or all
of this fee ends up with the liquidity providers. In the Decentralized Finance (DeFi)
summer of 2020, so-called yield farming became popular, and liquidity providers
could earn additional returns by allocating newly created governance tokens; see [5].
This allocation can work to kick-start a project, but it is not a means which is
medium-term sustainable, as the tokens will only retain value if their volume remains
constrained. The most popular of these CFMMs is the constant product market maker
(CPMM), which uses the product of the volumes of the two or more tokens involved
as the invariant. The CPMM setup is simple; it is self-balancing through arbitrageurs,
requires no active involvement from liquidity providers, and has low computational
demands, making it suitable for a smart contract on a blockchain. However, it is not
ideal either. It is capital intensive, exposes the liquidity providers to opportunity costs,
and overall return-on-investments may range from fair to unacceptably bad once the
yields from yield farming run out. The most commonly associated opportunity cost for
CPMMs is called impermanent loss. This terminology can however be misleading as the
corresponding loss rarely ever disappears in practice. [4] therefore argues that the term
divergence loss2 would be more accurate for a scientific context. To generate a solid
framework to investigate these problems further, we derive the formulas which apply
in this context and look at some aspects in detail; we focus mainly on CPMM. In the
mathematical treatment, we ignore gas fees and disregard the possibility of so-called
maximum/miner extractable value attacks (MEV attacks), which correspond to a form
of front running ; see also [6]. Some aspects may be counterintuitive or tricky, although
we basically only need elementary mathematics throughout the article. Topics covered
include the following:

• We investigate in the sections 2.2 and 3.2 the impact of transaction cost as they are
commonly implemented in DeFi applications.

• We show in the section 3.3 how to exploit arbitrage opportunities in unbalanced
liquidity pools.

• We valuate in the section 3.4 the hedging of the impermanent loss. We demonstrate
that hedging the impermanent loss may be quite expensive and that prevalent risk
compensations for CPMMs are likely too low.

1This fee is sometimes also referred to as swap fee; e.g., see [3], [4].
2In this article, we stick to the term «impermanent loss» all the same.

2

Electronic copy available at: https://ssrn.com/abstract=4593669



• We solve in the section 3.8 an inverse problem such that one can rely on classical
FX-rate dynamics in order to simulate consistent roll-forwards of liquidity pools.
This is particularly relevant for risk management purposes. The publicly accessible
Jupyter notebook illustrates an implementation in Python.

• We elaborate in the section 3.9 that absolute hedging for flat inventories is not
a feasible option for liquidity providing. The costs are comparable to hedging the
impermanent loss.

• We propose in the section 3.10 order size as well as pool size dependent transaction
cost, which may incentivize the desired levels of liquidity.

• We derive in the section 3.11 the optimal trade execution for different situations.
• We tackle in the section 3.12 an analytical argument of noise trades.
• In the appendix, we briefly look at variations of the CPMM framework, namely

Uniswap v3, Balancer, and Flat Curve.

AMM is an emerging field of application and research. There are already a number
of publications in this regard; e.g., see [7] for a comprehensive introduction and further
references. There are also numerous pertinent blogs. Some of our discussion points
are treated in greater generality in [8]. To the best of our knowledge, particularly
the considerations of the sections 3.6–3.10 have not yet been addressed conclusively
elsewhere.

2 Constant Function Market Maker (CFMM)

2.1 Notation

Notation Description
F (x, y) ≡ c isoline(s) of the liquidity pool

f(x)
explicit solution y = f(x) of the implicit equation
F (x, y) = c

xt > 0
amount of the first token denoted by X (e.g.,
XTZ) at time t

yt > 0
amount of the second token denoted by Y (e.g.,
YOU) at time t

ct = F (xt, yt) available liquidity at time t

St =
Fx(xt, yt)

Fy(xt, yt)
= −f ′(xt)

implied spot FX-rate (e.g., XTZYOU) at time t,
i.e., the value of 1 token X denominated in Y

Sx
t > 0

value of 1 token X with respect to some
numéraire (e.g., USD) at time t

Sy
t > 0

value of 1 token Y with respect to the same
numéraire at time t

0 ≤ κ1 < 1 transaction fee of the infrastructure provider
0 ≤ κ2 < 1 transaction fee of the liquidity pool
0 ≤ κ := κ1 + κ2 < 1 total transaction fees

XTZ is the native token of the Tezos blockchain. YOU is the governance token
of the youves ecosystem. We use these two tokens to illustrate the two generic
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X xt yt Y
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Fig. 1 Overview of the liquidity pool with the posted amounts xt and yt. The setup involves three
currencies (X, Y , and the numéraire) as well as three FX-rates.

placeholders X and Y ; see also the schematic chart in the Figure 1 for a better
understanding. All quantities with a subscript t represent càdlàg stochastic processes
in continuous time.

2.2 Methodology
There are no fees for posting or withdrawing liquidity. If one exchanges X for Y , or
vice versa, via the liquidity pool, one basically does not leave the current isoline from
the implicit function definition (modulo transaction fees). Generally speaking, one has
to bear a transaction fee of, e.g., κ = 0.35% (excluding gas fees). In fact, things are a
bit more involved. On the one hand, the fee consists of a service fee, e.g., κ1 = 0.10%
that leaves the pool and rewards the liquidity pool provider. On the other hand, it
consists of a κ2 = 0.25% liquidity fee that remains in the pool and remunerates the
liquidity providers. For illustration, e.g., see Plenty, Quipuswap.

Definition 1. Let us assume that a market participant initiates a swap at time t by
posting ∆x of X to the liquidity pool. In return, she receives −∆y(∆x) of Y (the sign
is by convention), where ∆y(∆x) < 0 solves the equation

F
(
xpre
t + (1− κ)∆x, ypre +∆y(∆x)

) !
= F

(
xpre
t , ypre

t ). (1)

One part of the transaction fees is paid implicitly to the pool by increasing the liquidity
to the updated isoline

cpostt (∆x) := F
(
xpost
t (∆x), ypost

t (∆x)
)
:= F

(
xpre
t + (1− κ1)∆x, ypre

t +∆y(∆x)
)
. (2)

The residual part κ1∆x is paid out to the infrastructure provider and leaves our
consideration. Analogously, if ∆y of Y is posted to the liquidity pool for −∆x(∆y) of
X in return, the corresponding equation reads

F
(
xpre
t +∆x(∆y), ypre + (1− κ)∆y

) !
= F

(
xpre
t , ypre

t ). (3)
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Similarly,

cpostt (∆y) := F
(
xpost
t (∆y), ypost

t (∆y)
)
:= F

(
xpre
t +∆x(∆y), ypre

t + (1− κ1)∆y
)

(4)

refers to as the updated liquidity level.

Fees are always paid in the posted currency that devaluates. As we shall see, the
market impact of transactions is often much greater than the impact of common
transaction costs. The superscripts «pre» and «post» indicate that a transaction
is taking place at this time instance. Alternatively, one could use another common
notation xt– := xpre

t and xt := xpost
t .

2.3 Consistency of the FX-rates
By absence of arbitrage (and by neglecting transaction costs for the sake of simplicity),
the parity Sx

t = StS
y
t must prevail. Any discrepancy can theoretically be exploited

or constitutes an illiquidity premium. The spot FX-rate St changes with each swap.
For the remainder of the article, we tacitly assume without loss of generality that the
stochastic rate Sx

t is given exogenously and that it is not affected by swaps within the
liquidity pool. Equivalently, the token X is comparatively liquid, and the size of the
liquidity pool is negligible with respect to the total outstanding amount of X. Later
on, we will need to distinguish two limiting cases depending on whether the CFMM
is just a marketplace (section 3.5) or the market (section 3.6).

Assumption 2. We assume that (Sx
t )t≥0 is independent of (yt)t≥0.

3 Constant Product Market Maker (CPMM)

3.1 Model
Definition 3. F simply is the product of the two components, i.e.,

F (x, y) := xy. (5)

The involved isolines are hyperbolas. The spot FX-rate is given by

St =
Fx(xt, yt)

Fy(xt, yt)
=

yt
xt

. (6)

Definition 3 is a popular choice. There are various modifications, e.g., Uniswap v3
(see the section A in the appendix) with leveraged positions, or Balancer (see the
section B) involving n > 2 assets. With the standard approach, the FX-rate changes
instantaneously with every transaction. In the context of stable token pairs, other
CFMM approaches with less susceptibility towards medium-sized transactions are
more suitable; e.g., see the section C for an applicable alternative.
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3.2 Dynamics of the Liquidity Pool

3.2.1 Case of Posting X

If one intends to withdraw the target amount ∆y ∈ (0, ypre
t ) of Y , then the required

posting of X amounts to

∆x(∆y) =
xpre
t ∆y

(1− κ)(ypre
t −∆y)

. (7)

Generally, posting ∆x > 0 of X leads in the liquidity pool to an outflow of

∆y(∆x) =
xpre
t ypre

t

xpre
t + (1− κ)∆x

− ypre
t = − (1− κ)ypre

t ∆x

xpre
t + (1− κ)∆x

< 0 (8)

in Y . On the isolated level of the liquidity pool, X devaluates while Y appreciates.
The realized FX-rate of the trade amounts to

S̃t(∆x) =

∣∣∆y(∆x)
∣∣

∆x
=

(1− κ)ypre
t

xpre
t + (1− κ)∆x

< Spre
t . (9)

The subsequent state of the liquidity pool consists of the components

xpost
t (∆x) = xpre

t + (1− κ1)∆x > xpre
t , (10)

ypost
t (∆x) = ypre

t +∆y(∆x) =
xpre
t ypre

t

xpre
t + (1− κ)∆x

< ypre
t , (11)

Spost
t (∆x) =

xpre
t ypre

t(
xpre
t + (1− κ1)∆x

)(
xpre
t + (1− κ)∆x

) < Spre
t . (12)

S̃t(∆x) ∈
(
Spost
t (∆x), Spre

t

)
holds, provided that the posted amount is sufficiently

large, namely

∆x
!
>

κ

(1− κ1)(1− κ)
xpre
t ; (13)

compare (9) and (12). Otherwise, it even holds S̃t(∆x) ≤ Spost
t (∆x) < Spre

t . If κ = 0,
then S̃t(∆x) is the geometric mean of Spost

t (∆x) and Spre
t .

3.2.2 Case of Posting Y

If one intends to withdraw the target amount ∆x ∈ (0, xpre
t ) of X, then the required

posting of Y amounts to

∆y(∆x) =
ypre
t ∆x

(1− κ)(xpre
t −∆x)

. (14)
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Generally, posting ∆y > 0 of Y leads in the liquidity pool to an outflow of

∆x(∆y) =
xpre
t ypre

t

ypre
t + (1− κ)∆y

− xpre
t = − (1− κ)xpre

t ∆y

ypre
t + (1− κ)∆y

< 0 (15)

in X. On the isolated level of the liquidity pool, X appreciates while Y depreciates.
The realized FX-rate amounts to

S̃t(∆y) =
∆y∣∣∆x(∆y)

∣∣ = ypre
t + (1− κ)∆y

(1− κ)xpre
t

> Spre
t . (16)

The subsequent state of the liquidity pool consists of the components

xpost
t (∆y) = xpre

t +∆x(∆y) =
xpre
t ypre

t

ypre
t + (1− κ)∆y

< xpre
t , (17)

ypost
t (∆y) = ypre

t + (1− κ1)∆y > ypre
t , (18)

Spost
t (∆y) =

(
ypre
t + (1− κ1)∆y

)(
ypre
t + (1− κ)∆y

)
xpre
t ypre

t

> Spre
t . (19)

S̃t(∆y) ∈
(
Spre
t , Spost

t (∆y)
)

holds, provided that the posted amount is sufficiently
large. Again,

∆y
!
>

κ

(1− κ1)(1− κ)
ypre
t ; (20)

compare (16) and (19). Otherwise, it even holds S̃t(∆x) ≥ Spost
t (∆x) > Spre

t . If κ = 0,
then S̃t(∆y) is the geometric mean of Spre

t and Spost
t (∆y).

3.3 Arbitrage
Both sides of the liquidity pool must have the same economic value at all times, i.e.,
Sx
t x

pre
t

!
= Sy

t y
pre
t . Otherwise, at least if the discrepancy is sufficiently large, it can

be exploited in terms of a roundtrip, ceteris paribus. There is usually a narrow no
arbitrage corridor, whose boundaries can be determined explicitly without further ado.

Theorem 4 (Maximal Arbitrage Opportunity). Let us consider a CPMM of
Definition 3 and set

s :=
Sx
t

Sy
t

. (21)

1. If it holds Sx
t x

pre
t < Sy

t y
pre
t , then posting

∆x =
−sxpre

t (2− κ1 − κ) +
√
D∆x

2s(1− κ1)(1− κ)
, (22)
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where D∆x :=
(
sxpre

t (2− κ1 − κ)
)2 − 4

(
s(1− κ1)(1− κ)

)(
s(xpre

t )2 − xpre
t ypre

t

)
> 0,

initiates the optimal arbitrage opportunity, provided that

s <
(1− κ1)(1− κ)

(1 + κ2)

ypre
t

xpre
t

(23)

is satisfied.

2. If it holds Sx
t x

pre
t > Sy

t y
pre
t , then posting

∆y =
−ypre

t (2− κ1 − κ) +
√

D∆y

2(1− κ1)(1− κ)
, (24)

where D∆y :=
(
ypre
t (2 − κ1 − κ)

)2 − 4
(
(1 − κ1)(1 − κ)

)(
(ypre

t )2 − sxpre
t ypre

t

)
> 0,

initiates the optimal arbitrage opportunity, provided that

s >
(1 + κ2)

(1− κ1)(1− κ)

ypre
t

xpre
t

(25)

is satisfied.

Proof. 1. For the regulation, we aim at bringing the liquidity pool back into its
equilibrium state sxpost

t = ypost
t by posting ∆x > 0. This leaves us with the equation

Sx
t

(
xpre
t + (1− κ1)∆x

) !
= Sy

t

xpre
t ypre

t

xpre
t + (1− κ)∆x

. (26)

This quadratic equation in ∆x can be rearranged into the standard form

0 = s(1− κ1)(1− κ)︸ ︷︷ ︸
>0

[∆x]2 + sxpre
t (2− κ1 − κ)︸ ︷︷ ︸

>0

∆x+ s(xpre
t )

2 − xpre
t ypre

t︸ ︷︷ ︸
<0

. (27)

It has the two well-defined solutions

∆x1,2 =
−sxpre

t (2− κ1 − κ)±
√
D∆x

2s(1− κ1)(1− κ)
≷ 0; (28)

solely ∆x1 is economically meaningful. ∆x2 < −xpre
t is not feasible economically

since we cannot withdraw more than the available amounts from the liquidity
pool. ∆x1 vanishes for s = Spre

t . It needs to be noted that the net value
−Sx

t ∆x1 − Sy
t ∆y(∆x1) with respect to the numéraire is not necessarily positive.

Hence, whether there is an arbitrage opportunity or not must be examined carefully
by checking the validity of (13), which is satisfied exactly3 under the requirement
(23).

3Algebraically, one would have to impose additionally the requirement s
!
> 0. However, s ≤ 0 is not

reasonable in our setting anyway.
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2. Similarly, we need to establish the parity

Sx
t

xpre
t ypre

t

ypre
t + (1− κ)∆y

!
= Sy

t

(
ypre
t + (1− κ1)∆y

)
. (29)

The same procedure as above yields

0 = (1− κ1)(1− κ)︸ ︷︷ ︸
>0

[∆y]2 + ypre
t (2− κ1 − κ)︸ ︷︷ ︸

>0

∆y + (ypre
t )2 − Spost

t xpre
t ypre

t︸ ︷︷ ︸
<0

(30)

with the two solutions

∆y1,2 =
−ypre

t (2− κ1 − κ)±
√

D∆y

2(1− κ1)(1− κ)
≷ 0; (31)

again, solely ∆y1 is economically meaningful. ∆y1 vanishes for Spost
t = Spre

t . The
validity of the condition (20) must be verified just as well, which is equivalent to
the requirement (25).

This concludes the proof.

In the absence of transaction fees, the involved quantities simplify considerably,
and the two cases unite in one formula. We leave the elementary adjustments of the
proof to the knowledgeable reader.

Corollary 5 (Maximal Arbitrage Opportunity in the Absence of Transaction Costs).
Let us consider the setting of Theorem 4 with κ = 0. In either case, eligible swapping4

∆x = −xpre
t +

√
xpre
t ypre

t

s
against ∆y = −ypre

t +
√

sxpre
t ypre

t (32)

has an economic value of

−Sx
t ∆x1 − Sy

t ∆y1 =

(√
Sx
t x

pre
t −

√
Sy
t y

pre
t

)2

≥ 0 (33)

with respect to the numéraire. For s ̸= Spre
t , one can exploit an arbitrage opportunity

indeed. It vanishes if and only if s = Spre
t .

3.4 Impermanent Loss without Transaction Cost
For easier understanding, let us temporarily assume κ = 0; the general case is
treated subsequently in the sections 3.5 and 3.6. If the intrinsic FX-rate St remained
constant, then one could earn transaction cost from providing liquidity without adverse
circumstances. If the FX-rate changes in either direction, one has to bear substantial

4More precisely, this involves posting the positive quantity to the pool and getting the absolute value of
the negative quantity in return.
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Fig. 2 This chart is generated with the reference points xt = 125.00, Sx
t = 4.00, yt = 156.25, and

Sy
t = 3.20. It indicates the shape of the impermanent loss. The blue line would depict the value of

the vanilla portfolio with respect to movements of Sy
t , ceteris paribus, if one held xt and yt in a

wallet. The orange line represents the corresponding value of the liquidity pool, if it is regulated by
arbitrageurs. The discrepancy between these two curves is the impermanent loss.

opportunity costs. Let us assume that we provided xt and yt to the liquidity pool at
time t, which was worth

Sx
t xt + Sy

t yt = Sx
t (xt + St

−1yt) = 2Sx
t xt (34)

with respect to the numéraire. If the FX-rate at time t +∆t changed to St+∆t, then
arbitrageurs would have rebalanced the amounts to

xt+∆t =

√
ct

St+∆t
, yt+∆t =

√
ctSt+∆t. (35)

Therefore, the opportunity cost would amount to

Sx
t+∆t

(
xt+∆t + St+∆t

−1yt+∆t

)︸ ︷︷ ︸
rebalanced liquidity pool

−Sx
t+∆t

(
xt + St+∆t

−1yt
)︸ ︷︷ ︸

vanilla portfolio

= −Sx
t+∆txt

(
1−

√
St

St+∆t

)2

,

(36)
which perfectly offsets the gain of the arbitrageurs; see (33). The Figure 2 depicts
the shape of the impermanent loss qualitatively. Note that the impermanent loss is
symmetric in the sense that it basically only depends on the relative performance of
St+∆t with respect to St. It exceeds the revalued liquidity pool outside of the range
St(2±

√
3
)2 ≈ [0.07St, 14St].
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Theoretically, as proposed by [9], the impermanent loss could be hedged (but
typically at significant cost). By the general Carr-Madan-formula (see [10]), it holds
for any g : (0,∞) −→ R subject to sufficient regularity

g(x) = g(x0) + g′(x0)(x− x0) +

∫ x0

0

g′′(k)max{k − x, 0} dk

+

∫ ∞

x0

g′′(k)max{x− k, 0} dk.
(37)

For the impermanent loss measured in X, it holds at St =
yt
xt

ℓX(s) =

(
√
xt −

√
yt
s

)2

ℓX(St) = 0, (38)

∂sℓ
X(s) =

√
xtyt
s3

− yt
s2

∂sℓ
X(St) = 0, (39)

∂ssℓ
X(s) = −3

2

√
xtyt
s5

+
2yt
s3

. (40)

Thus, the impermanent loss with respect to some fixed maturity T > t (e.g., one year)
can perfectly be replicated in X through a continuum of European put and call options.
More precisely, it entails

ℓX(ST ) =

∫ St

0

(
− 3

2

√
xtyt
k5

+
2yt
k3

)
max{k − ST , 0} dk

+

∫ ∞

St

(
− 3

2

√
xtyt
k5

+
2yt
k3

)
max{ST − k, 0} dk.

(41)

Furthermore, its economic value can be assessed by approximating the continuum
using Riemann sums. For volatilities of St beyond 100% and 150% (as often observed
with crypto currencies), it typically exceeds 10% and 25% respectively of the liquidity
pool value over a target horizon of 1y; these estimates can be easily replicated using
the Black-Scholes-Merton formulas (see [11], [12]) and are also integrated in the
Jupyter notebook. If κ = 0.35%, this is equivalent to a roughly 28- and 70-fold
circulation respectively of the entire liquidity pool (before liquidity fees are earned at
all). For many crypto token pairs, this impediment is simply not realistic. This finding
is corroborated by [13] and [14]. The former examines empirically the encountered
impermanent loss for Uniswap v3 (see the section A in the appendix). The latter relies
on agent-based simulations.

3.5 Liquidity Pool Dynamics in the Case 1: A Marketplace
Consistently, both Sx

t and Sy
t remain unaffected by transactions and are given

exogenously. On the one hand, St (one monetary unit of X denominated in Y ) can
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be inferred from Sx
t and Sy

t by absence of arbitrage; see Theorem 4. On the other
hand, St can be inferred from the state and the dynamics of the CPMM. Discrepancies
in the FX-rate from the two sources can be attributed to asset illiquidity. In the
following, we derive several useful quantities of pool dynamics that depend exclusively
on independent input parameters, namely

Sx
t , Sy

t , xpre
t , κ = κ1 + κ2, contribution: either ∆x or ∆y. (42)

0. Initial state of the liquidity pool in equilibrium:

xpre
t with accounting value Sx

t x
pre
t (43)

ypre
t =

Sx
t x

pre
t

Sy
t

with accounting value Sy
t y

pre
t = Sx

t x
pre
t (44)

cpre
t = xpre

t ypre
t =

Sx
t (x

pre
t )2

Sy
t

(45)

FX-rate of the liquidity pool: Spre
t =

ypre
t

xpre
t

=
Sx
t

Sy
t

(46)

Accounting value of the liquidity pool: V pre
t = Sx

t x
pre
t + Sy

t y
pre
t

= 2Sx
t x

pre
t

(47)

x. Swap ∆x > 0 against the other token:

∆y(∆x) =
−Sx

t x
pre
t (1− κ)∆x

Sy
t

(
xpre
t + (1− κ)∆x

) < 0 leave the liquidity pool (48)

FX-rate of the transaction: S̃t(∆x) =
Sx
t (1− κ)xpre

t

Sy
t

(
xpre
t + (1− κ)∆x

) (49)

Subsequent state of the liquidity pool after the transaction:

xpost
t (∆x) = xpre

t + (1− κ1)∆x (50)

ypost
t (∆x) =

Sx
t (x

pre
t )2

Sy
t

(
xpre
t + (1− κ)∆x

) (51)

cpost
t (∆x) =

xpre
t + (1− κ1)∆x

xpre
t + (1− κ)∆x

cpre
t

=
xpre
t + (1− κ1)∆x

xpre
t + (1− κ)∆x

Sx
t (x

pre
t )2

Sy
t

(52)

Spost
t (∆x) =

cpre
t(

xpre
t + (1− κ1)∆x

)(
xpre
t + (1− κ)∆x

)
=

Sx
t (x

pre
t )2

Sy
t

(
xpre
t + (1− κ1)∆x

)(
xpre
t + (1− κ)∆x

) (53)
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V post
t (∆x) = Sx

t

(
xpre
t + (1− κ1)∆x

)
+ Sy

t

cpre
t

xpre
t + (1− κ)∆x

= Sx
t

(
xpre
t + (1− κ1)∆x

)
+

Sx
t (x

pre
t )2

xpre
t + (1− κ)∆x

> V pre
t

(54)

Return on capital:

rt(∆x) =

Sx
t (1− κ1)∆x+ Sy

t y
pre
t

(
xpre
t

xpre
t + (1− κ)∆x

− 1

)
Sx
t x

pre
t + Sy

t y
pre
t

=
∆x
(
κ2x

pre
t + (1− κ1)(1− κ)∆x

)
2xpre

t

(
xpre
t + (1− κ)∆x

)
(55)

Return on transaction volume:

r̃t(∆x) =

Sx
t (1− κ1)∆x+ Sy

t y
pre
t

(
xpre
t

xpre
t + (1− κ)∆x

− 1

)
−Sy

t ∆y(∆x)

=
Sx
t (1− κ1)x

pre
t + Sx

t (1− κ1)(1− κ)∆x− Sy
t (1− κ)ypre

t

Sx
t (1− κ)xpre

t

(56)

y. Swap ∆y > 0 against the other token:

∆x(∆y) =
−Sy

t (1− κ)xpre
t ∆y

Sx
t x

pre
t + Sy

t (1− κ)∆y
< 0 leave the liquidity pool (57)

FX-rate of the transaction: S̃t(∆y) =
Sx
t x

pre
t + Sy

t (1− κ)∆y

Sy
t (1− κ)xpre

t

(58)

Subsequent state of the liquidity pool after the transaction:

xpost
t (∆y) =

Sx
t (x

pre
t )2

Sx
t x

pre
t + Sy

t (1− κ)∆y
(59)

ypost
t (∆y) =

Sx
t x

pre
t

Sy
t

+ (1− κ1)∆y (60)

cpost
t (∆y) =

Sx
t x

pre
t + Sy

t (1− κ1)∆y

Sx
t x

pre
t + Sy

t (1− κ)∆y
cpre
t

=
Sx
t x

pre
t + Sy

t (1− κ1)∆y

Sx
t x

pre
t + Sy

t (1− κ)∆y

Sx
t (x

pre
t )2

Sy
t

(61)

Spost
t (∆y) =

(
ypre
t + (1− κ1)∆y

)(
ypre
t + (1− κ)∆y

)
cpre
t

=

(
Sx
t x

pre
t + Sy

t (1− κ1)∆y
)(
Sx
t x

pre
t + Sy

t (1− κ)∆y
)

Sx
t S

y
t (x

pre
t )2

(62)
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V post
t (∆y) = Sx

t

cpre
t

ypre
t + (1− κ)∆y

+ Sy
t

(
ypre
t + (1− κ1)∆y

)
=

(Sx
t x

pre
t )2

Sx
t x

pre
t + Sy

t (1− κ)∆y
+
(
Sx
t x

pre
t + Sy

t (1− κ1)∆y
)
> V pre

t

(63)

Return on capital:

rt(∆y) =

Sx
t x

pre
t

(
ypre
t

ypre
t + (1− κ)∆y

− 1

)
+ Sy

t (1− κ1)∆y

Sx
t x

pre
t + Sy

t y
pre
t

=
Sy
t ∆y

(
Sx
t κ2x

pre
t + Sy

t (1− κ1)(1− κ)∆y
)

2Sx
t x

pre
t

(
Sx
t x

pre
t + Sy

t (1− κ)∆y
)

(64)

Return on transaction volume:

r̃t(∆y) =

Sx
t x

pre
t

(
ypre
t

ypre
t + (1− κ)∆y

− 1

)
+ Sy

t (1− κ1)∆y

−Sx
t ∆x(∆y)

=
−Sx

t (1− κ)xpre
t + Sy

t (1− κ1)(1− κ)∆y + Sy
t (1− κ1)y

pre
t

Sy
t (1− κ)xpre

t

(65)

It needs to be noted that this market situation is somewhat pathological as it opens
arbitrage opportunities after every excursion of St from the parity, ceteris paribus;
see the section 3.3. The liquidity pool can be regarded as immediate counterparty,
whereas arbitrageurs assume the role of delayed counterparties who earn the slippage.
Moreover, with respect to the numéraire, there is no impermanent loss in this
comparatively small marketplace even in the absence of transaction cost; see (54) and
(63). Neither X nor Y require the implicit rate St for valuation purposes.

3.6 Liquidity Pool Dynamics in the Case 2: The Market
Without loss of generality, let us assume that the CPMM is the only marketplace
where Y can be bought and sold against X, whereas X is a comparatively liquid
token. Consistently, Sx

t remains unaffected by the transaction and St is implied by
the CPMM. Thus, Sy

t can be inferred by absence of arbitrage; see Theorem 4. On
the one hand, buying and holding a crypto currency pair is a frictionless trading
strategy which is far more promising than providing liquidity (since one does not
incur an impermanent loss). On the other hand, a token without liquidity has no
value. Therefore, one needs to come up with a risk management solution to incentivize
liquidity. Apparently, this is not an easy task; we present a viable proposal in
the section 3.10. We proceed similarly as in the previous section. This time, the
independent input parameters for the model comprise

Sx
t , xpre

t , ypre
t , κ = κ1 + κ2, contribution: either ∆x or ∆y. (66)
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0. Initial state of the liquidity pool in equilibrium:

xpre
t with accounting value Sx

t x
pre
t (67)

ypre
t with accounting value Sy,pre

t ypre
t = Sx

t x
pre
t , where

Sy,pre
t = Sx

t (S
pre
t )−1

(68)

cpre
t = xpre

t ypre
t (69)

FX-rate of the liquidity pool: Spre
t =

ypre
t

xpre
t

(70)

Accounting value of the liquidity pool: V pre
t = Sx

t x
pre
t + Sy,pre

t ypre
t

= 2Sx
t x

pre
t

(71)

x. Swap ∆x > 0 against the other token:

∆y(∆x) =
−ypre

t (1− κ)∆x

xpre
t + (1− κ)∆x

< 0 leave the liquidity pool (72)

FX-rate of the transaction: S̃t(∆x) =
(1− κ)ypre

t

xpre
t + (1− κ)∆x

(73)

Subsequent state of the liquidity pool after the transaction:

xpost
t (∆x) = xpre

t + (1− κ1)∆x (74)

ypost
t (∆x) =

xpre
t ypre

t

xpre
t + (1− κ)∆x

(75)

cpost
t (∆x) =

xpre
t + (1− κ1)∆x

xpre
t + (1− κ)∆x

xpre
t ypre

t (76)

Spost
t (∆x) =

cpre
t(

xpre
t + (1− κ1)∆x

)(
xpre
t + (1− κ)∆x

)
=

xpre
t ypre

t(
xpre
t + (1− κ1)∆x

)(
xpre
t + (1− κ)∆x

) (77)

V post
t (∆x) = Sx

t

(
xpre
t + (1− κ1)∆x

)
+ Sy,post

t (∆x)
cpre
t

xpre
t + (1− κ)∆x

= 2Sx
t

(
xpre
t + (1− κ1)∆x

) ∆x→∞−→ ∞
(78)

Return on capital: rt(∆x) =
(1− κ1)∆x

xpre
t

(79)

Return on transaction volume:

r̃t(∆x) =
2Sx

t

(
xpre
t + (1− κ1)∆x

)
− 2Sx

t x
pre
t

−Sy,pre
t ∆y(∆x)

=
2(1− κ1)x

pre
t + 2(1− κ1)(1− κ)∆x

(1− κ)xpre
t

(80)
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y. Swap ∆y > 0 against the other token:

∆x(∆y) =
−xpre

t (1− κ)∆y

ypre
t + (1− κ)∆y

< 0 leave the liquidity pool (81)

FX-rate of the transaction: S̃t(∆y) =
ypre
t + (1− κ)∆y

xpre
t (1− κ)

(82)

Subsequent state of the liquidity pool after the transaction:

xpost
t (∆y) =

xpre
t ypre

t

ypre
t + (1− κ)∆y

(83)

ypost
t (∆y) = ypre

t + (1− κ1)∆y (84)

cpost
t (∆y) =

ypre
t + (1− κ1)∆y

ypre
t + (1− κ)∆y

xpre
t ypre

t (85)

Spost
t (∆y) = Spost

t =

(
ypre
t + (1− κ1)∆y

)(
ypre
t + (1− κ)∆y

)
cpre
t

=

(
ypre
t + (1− κ1)∆y

)(
ypre
t + (1− κ)∆y

)
xpre
t ypre

t

(86)

V post
t (∆y) = Sx

t

cpre
t

ypre
t + (1− κ)∆y

+ Sy,post
t

(
ypre
t + (1− κ1)∆y

)
=

2Sx
t x

pre
t ypre

t

ypre
t + (1− κ)∆y

∆x→∞−→ 0

(87)

Return on capital: rt(∆y) = − (1− κ)∆y

ypre
t + (1− κ)∆y

(88)

Return on transaction volume:

r̃t(∆y) =

2Sx
t x

pre
t ypre

t

ypre
t + (1− κ)∆y

− 2Sx
t x

pre
t

−Sx
t ∆x(∆y)

= −2 (89)

The simplicity of r̃t(∆y) in equation (89) is remarkable.

3.7 Market Capitalization versus Sale Value
Firstly, let us assume that one holds ∆y > 0 of Y . The accounting value of the holding
amounts to

Vt = Sy
t ∆y = Sx

t St
−1∆y = Sx

t

xpre
t

ypre
t

∆y. (90)

In turn, by (81), if one wants to dispose of this holding, the realized sale value
denominated in the numéraire amounts to

Ṽt = Sx
t

xpre
t (1− κ)∆y

ypre
t + (1− κ)∆y

= Vt −
(
1− (1− κ)ypre

t

ypre
t + (1− κ)∆y

)
Vt︸ ︷︷ ︸

illiquidity premium

. (91)

16

Electronic copy available at: https://ssrn.com/abstract=4593669



Secondly, let us assume that one holds a fraction λ ∈ [0, 1] of the liquidity pool.
The accounting value of the holding amounts to Vt = 2λSx

t x
pre
t . In turn, the sale

value can be calculated by withdrawing λxpre
t and λypre

t – leading to a new liquidity
of cpost

t = (1− λ)2xpre
t ypre

t – and swapping ∆y = λypre
t against

∆x(∆y) =
(1− κ)(1− λ)λxpre

t

1− κλ
. (92)

With respect to the numéraire, this leaves us with

Ṽt =
λ(2− κ− λ)

1− κλ
Sx
t x

pre
t = 2λSx

t x
pre
t︸ ︷︷ ︸

=Vt

− λ(κ+ λ− 2κλ)

1− κλ
Sx
t x

pre
t︸ ︷︷ ︸

illiquidity premium

. (93)

For κ = 0, the illiquidity premium reduces to λ2Sx
t x

pre
t .

3.8 Model-Independent Simulation and the Inverse Problem
For a given initial state of a liquidity pool, one can simulate arbitrary5 non-negative
paths of Sx

t , Sy
t and St together with stochastic trading instances T ⊂ [0,∞) over a

predefined time horizon. From this, one derives the associated càdlàg step function
S⌟
t := Smax{ti∈T|ti≤t}; see the Figure 3 for an illustration. For each trading instance,

one can utilize the equation (28) or (31) respectively (depending on whether the
updated Spost

t := S⌟
t is larger or smaller than Spre

t := S⌟
t–) and back out the unique

swap (∆x,∆y) that caused this FX-rate shift. With this approach, one easily obtains
empirically a rich class of consistent roll-forwards of a liquidity pool including all
individual transactions. Notably, the approach works regardless of the model choice for
the FX-rates and the trading instances. To this end, the following reparametrization of
the inverse problem may be useful: Let p ∈ (0,∞) and Spost

t = pSpre
t . Let us introduce

the auxiliary quantity

ξ(κ1, κ2, p) :=
−p(2− 2κ1 − κ2) +

√
p2κ2

2 + 4p(1− κ1)(1− κ1 − κ2)

2p(1− κ1)(1− κ1 − κ2)
. (94)

Note that ξ(0, 0, p) =

√
p

p
− 1 and ξ(κ1, κ2, 1) = 0. Then, one can retrieve the posted

amounts {
∆x(p) = ξ(κ1, κ2, p)x

pre
t if p ≤ 1,

∆y(p) = ξ(κ1, κ2, p
−1)ypre

t if p > 1,
(95)

5The framework is open to any common model class.
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as well as the revaluation of the liquidity pool

V post
t (p) =


2Sx

t x
pre
t

(
1 + (1− κ1)ξ(κ1, κ2, p)

)
if p ≤ 1,

2Sx
t x

pre
t(

1 + (1− κ)ξ(κ1, κ2, p−1)
) if p > 1.

(96)

The formulas (95) and (96) highlight a certain symmetry in both directions of FX
movements. One obtains the updated accounting value of the liquidity pool through
interest-like compounding and discounting respectively. See the Jupyter notebook for
a readily available implementation of the simulation framework in Python as well as
the Figure 4.

3.9 Absolute Hedge
Issuers of the token Y desire a suitable asset liquidity. Therefore, it is worth looking at
whether an absolute hedge (i.e., keeping the economic value of the inventory flat) can
be achieved in a CPMM at reasonable cost. Unfortunately, this is not the case. Hedging
the significant downside risk at the cost of discarding upside potential comes at the
same cost as hedging the impermanent loss. For illustration, we ignore transaction
cost and measure everything with respect to X. We intend to replicate

h(s) := xt + styt︸ ︷︷ ︸
flat position

−

(
xt + syt︸ ︷︷ ︸

vanilla portfolio

−
(
√
xt −

√
syt

)2

︸ ︷︷ ︸
impermanent loss

)
, (97)

where st =
xt

yt
. Consistently, it holds

h(s) = (st − s)yt +

(
√
xt −

√
syt

)2

h(st) = 0, (98)

∂sh(s) = −
√

xtyt
s

∂sh(st) = −yt, (99)

∂ssh(s) =
1

2

√
xtyt
s3

. (100)

The Carr-Madan-formula corroborates that absolute hedges for CPMM are hardly
feasible. Indeed,

h(sT ) = −yt(sT − st) +

∫ st

0

1

2

√
xtyt

k3/2
max{k − sT , 0} dk

+

∫ ∞

st

1

2

√
xtyt

k3/2
max{sT − k, 0} dk.

(101)

By the put-call-parity, the short position of the flat delta hedge (consisting of yt long
puts and yt short calls) comes at almost no cost. The continuum of European options
has the same value as hedging the impermanent loss; see (41). Funding this significant
value requires a lot of noise trading.
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Fig. 3 The upper chart illustrates two sample paths of (Sx
t )0≤t≤1 and (St)0≤t≤1 respectively. The

lower chart shows the inferred càdlàg step functions that jump on randomly sampled trading instances.
In our considerations, changes in XTZYOU can only be observed through transactions.

3.10 Break-Even Transaction Cost
With automated market making as outlined in the Case 2, one encounters significant
opportunity cost. Since we cannot accurately predict the fees earned out of noise
trading, we need to come up with a different source of income that offsets the incurred
impermanent loss. Whereas κ1 is determined externally (e.g., 0.10% of the trade
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Fig. 4 This chart depicts the accounting value of the liquidity pool consistent with Figure 3. The
impact of transaction cost is almost not visible, whereas the impermanent loss (the discrepancy
between the performance of the liquidity pool and the vanilla portfolio) can become significantly large.

volume plus gas), we can implement order size and pool size dependent6 κ2(∆x)
and κ2(∆y) respectively; the higher the relative transaction volume, the higher the
illiquidity fee to be borne. We need to distinguish the two cases of posting X and Y .
We derive the minimal κ2 such that providing liquidity is at arm’s length with the
vanilla portfolio. Hence, if one enforced these fair transaction costs, the impermanent
loss would disappear with respect to any reference point repeatedly. We presume that
no further spread on top is required in order to incentivize the desired liquidity. On the
one hand, the transaction costs involved can become considerably large. On the other
hand, one would have to bear comparatively prohibitive costs with market orders in
a CLOB, if one trades through the entire order book. The approach also gets strong
support from the agent-based considerations in [15].

Lemma 6 (Break-Even Transaction Cost). Let us consider a CPMM of Definition 3.
If one establishes order size and pool size dependent transaction fees

κ2(∆x) =
(1− κ1)

2

xpre
t

∆x
+ (1− κ1)

, κ2(∆y) =
(1− κ1)

2

ypre
t

∆y
+ (1− κ1)

, (102)

then the liquidity providers do not incur an impermanent loss. It obviously holds
lim

∆x→∞
κ2(∆x) = lim

∆y→∞
κ2(∆y) = 1− κ1.

6In the notation, we omit the dependence on xpre
t and ypre

t respectively.

20

Electronic copy available at: https://ssrn.com/abstract=4593669



Proof. 1. Posting ∆x > 0 yields to

V post
t (∆x)

!
= Sx

t

(
xpre
t + Spost

t (∆x)−1ypre
t

)
, (103)

where, because of (77) and (78) respectively,

V post
t (∆x) = 2Sx

t

(
xpre
t + (1− κ1)∆x

)
, (104)

Spost
t (∆x)−1 =

(
xpre
t + (1− κ1)∆x

)(
xpre
t +

(
1− κ1 − κ2(∆x)

)
∆x
)

xpre
t ypre

t

. (105)

⇐⇒ κ2(∆x) =
(1− κ1)

2∆x

xpre
t + (1− κ1)∆x

=
(1− κ1)

2

xpre
t

∆x
+ (1− κ1)

∆x→∞−→ 1− κ1. (106)

2. Posting ∆y > 0 yields to

V post
t (∆y)

!
= Sx

t

(
xpre
t + Spost

t (∆y)−1ypre
t

)
, (107)

where, because of (86) and (87) respectively,

V post
t (∆y) =

2Sx
t x

pre
t ypre

t

ypre
t +

(
1− κ1 − κ2(∆y)

)
∆y

, (108)

Spost
t (∆y)−1 =

xpre
t ypre

t(
ypre
t + (1− κ1)∆y

)(
ypre
t +

(
1− κ1 − κ2(∆y)

)
∆y
) . (109)

⇐⇒ κ2(∆y) =
(1− κ1)

2∆y

ypre
t + (1− κ1)∆y

=
(1− κ1)

2

ypre
t

∆y
+ (1− κ1)

∆y→∞−→ 1− κ1. (110)

This concludes the proof.

Lemma 7. Let the premises of Lemma 6 be given. For receiving a desired ∆y of Y ,
where

0
!
< ∆y

!
<

ypre
t

2
, (111)

the required posting amounts to

∆x(∆y) =
xpre
t ∆y

(1− κ1)(y
pre
t − 2∆y)

∆y→ y
pre
t
2 –

−→ ∞. (112)

Analogously, for receiving a desired ∆x of X, where

0
!
< ∆x

!
<

xpre
t

2
, (113)
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the required posting entails

∆y(∆x) =
ypre
t ∆x

(1− κ1)(x
pre
t − 2∆x)

∆x→ x
pre
t
2 –

−→ ∞. (114)

Proof. By plugging ∆x(∆y) from (112) and κ2

(
∆x(∆y)

)
from (102) into (72), one

easily verifies that

−ypre
t

1− κ1 −
(1− κ1)

2

xpre
t

∆x(∆y)
+ (1− κ1)

∆x(∆y)

xpre
t +

1− κ1 −
(1− κ1)

2

xpre
t

∆x(∆y)
+ (1− κ1)

∆x(∆y)

= ∆y (115)

holds indeed. If (112) was not known, then one could solve (115) for ∆x(∆y) and
end up with a linear equation. Its solution is only economically meaningful within
the specified boundaries of (111). Regarding (114), either one exploits the symmetry
in the x- and y-directions, or one proceeds algebraically in the same way with the
expressions (114), (102) and (81) respectively. Again, the algebraic solution makes
only sense from the economic viewpoint up to half of the available amount xpre

t .

3.11 Optimal Trade Execution
Without further assumptions on the dynamics of the ecosystem, the question of
optimal trade execution cannot be answered conclusively. Optimality highly depends
on the behavior of the other market participants. Nonetheless, it is a relevant question
whether it may be advisable to split a large transaction into n equally sized small
trades, ceteris paribus. For a classical CPMM with flat transaction fees κ = κ1 + κ2,
executing one large swap is better than its counterpart, although the impact is typically
negligible. Exemplarily (with an abuse of notation), when posting ∆x > 0 twice, the
liquidity pool still ends up with(

xpost
t (∆x)

)
(∆x) = xpre

t + 2(1− κ1)∆x = xpost
t (2∆x), (116)
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whereas

(
ypost
t (∆x)

)
(∆x) =

(
xpre
t + (1− κ1)∆x

) xpre
t ypre

t

xpre
t + (1− κ)∆x(

xpre
t + (1− κ1)∆x

)
+ (1− κ)∆x

=
xpre
t + (1− κ1)∆x

xpre
t + (1− κ)∆x

· xpre
t ypre

t

κ2∆x+ xpre
t + (1− κ)2∆x

>
xpre
t + (1− κ1)∆x

xpre
t + (1− κ)∆x+ κ2∆x︸ ︷︷ ︸

=1

· xpre
t ypre

t

xpre
t + (1− κ)2∆x

= ypost
t (2∆x);

(117)

the strict inequality holds, because(
xpre
t + (1− κ)∆x+ κ2∆x

)(
xpre
t + (1− κ)2∆x

)
−
(
xpre
t + (1− κ)∆x

)(
κ2∆x+ xpre

t + (1− κ)2∆x
)

=κ2(1− κ)(∆x)2.

(118)

Consequently, one earns more tokens of Y by contributing 2∆x once. Furthermore,
for a classical CPMM without transaction cost, the same argument demonstrates
that executing one large swap is identical to initiating n small swaps. For break-even
transaction cost as in the section 3.10, splitting trades into smaller portions may
be worthwhile as the relatively applied κ2 grows with the order-size. In this case, a
trade-off must be solved between saved transaction fees and additionally required gas
fees (which are not order-size-dependent, but due for each transaction). An in-depth
analysis in this context can be found in [16].

3.12 Estimating the Impact of Noise Trades through
Roundtrips

Firstly, we consider for κ2 ≡ c the change in the value of the liquidity pool due to
successive posting of ∆x and

∆y =
(1− κ1)y

pre
t ∆x

(1− κ)
(
xpre
t + (1− κ)∆x

) , (119)

ceteris paribus. With an abuse of notation, the liquidity pool will then consist of(
xpost
t (∆x)

)
(∆y) = xpre

t tokens of X and

(
ypost
t (∆x)

)
(∆y) =

xpre
t ypre

t

xpre
t + (1− κ)∆x

+
(1− κ1)

2ypre
t ∆x

(1− κ)
(
xpre
t + (1− κ)∆x

) (120)

tokens of Y . In the Case 1 of a marketplace, the liquidity pool hosts a windfall profit.
In the Case 2 of the market, the liquidity pool consists of the same amount of X
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tokens and more Y tokens compared to the starting point. Thus, the value of Y has
slightly depreciated with respect to the numéraire. Secondly, we consider by symmetry
the change in the value of the liquidity pool due to successive posting of ∆y and the
analogue to (119) in ∆x. In the Case 1 of the marketplace, the liquidity pool hosts a
windfall profit again. In the Case 2 of the market, the liquidity pool consists of more
X tokens and the same amount of Y tokens compared to the starting point. Thus,
the value of Y has slightly appreciated with respect to the numéraire. If κ2 is order-
size-dependent as in the section 3.10 (without additional spread), then the analogue
to (119) is

∆y =
(1− κ1)y

pre
t ∆x(

1− κ1 − κ2(∆y)
)(

xpre
t +

(
1− κ1 − κ2(∆x)

)
∆x
) (121)

=

(
xpre
t + (1− κ1)∆x

)
ypre
t ∆x

(xpre
t )2 + (1− κ1)x

pre
t ∆x− 2(1− κ1)2(∆x)2

. (122)

The first implicit expression may include an additional spread. The second quantity
is only meaningful for sufficiently small ∆x up until the singularity that occurs at the
root of the numerator; the domain is D =

{
∆x ≥ 0

∣∣ (1− κ1)∆x < xpre
t

}
. Beyond this

root, a return to the starting point in X is no longer possible by means of one swap.
It is also worth parametrizing roundtrips in terms of returning to the initial FX-rate
Spre
t ; see the Jupyter notebook for a numeric implementation.
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Appendix A Uniswap v3

A.1 Model
In this adjusted framework (see Uniswap v3 documentation), one levers the provided
funds to a higher level of liquidity. If the FX-rate is at or below the self-determined
lower bound ℓ (i.e., St < ℓ < u), then the entire liquidity is provided in X; if the FX-
rate is at or beyond the self-determined upper bound u (i.e., ℓ < u < St), then the
entire liquidity is provided in Y . This enables range orders as well as limit orders7.
For the sake of simplicity, we ignore transaction cost. Moreover, we do not consider
the exact mechanism of the pool factory.
As long as St ∈ [ℓ, u] prevails, the actually provided funds xt and yt satisfy(

xt +
L√
u

)(
yt + L

√
ℓ

)
= L2. (A1)

7One either sets ℓ = −∞ or u = +∞.
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levered: xy = const

√
k

ℓ

√
k

u

√
kℓ

√
ku

unlevered:
(
x +

√
k

u

)(
y +

√
kℓ

)
= k = L2

Fig. A1 As long as the lower isoline does not leave the first quadrant, it will be levered to a level
of higher liquidity. Beyond the boundaries, automatic conversion is prevented.

L is an auxiliary quantity and does no longer comply with the natural interpretation of
a CPMM. The intuition of the leverage in the equation (A1) is shown in the Figure A1.
Additionally, the levered positions must coincide with the observed FX-rate, i.e.,

yt + L
√
ℓ

xt +
L√
u

!
= St. (A2)

Plugging this into the former equation leaves us with

St

(
xt +

L√
u

)2

= L2. (A3)

Hence, if ℓ, u, St

!
< u, and xt were given exogenously, then

L =
xt√

1

St
−
√

1

u

, yt = max

{
St

(
xt +

L√
u

)
− L

√
ℓ, 0

}
. (A4)
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Likewise, we get

(
yt + L

√
ℓ
)2

St
= L2. (A5)

If ℓ, u, St

!
> ℓ, and yt were given exogenously, then

L =
yt√

St −
√
ℓ
, xt = max

{
yt + L

√
ℓ

St
− L√

u
, 0

}
. (A6)

A.2 Dynamics of the Liquidity Pool
Analogously as for the classical CPMM, we get

∆x(∆y) =
L2

ypre
t +∆y + L

√
ℓ
− xpre

t − L√
u
, (A7)

∆y(∆x) =
L2

xpre
t +∆x+

L√
u

− ypre
t − L

√
ℓ, (A8)

provided that the FX-rate remains within [ℓ, u]. By plugging in the above expressions
for ∆x(∆y) and by utilizing the fundamental equation (A1), one easily checks that

ypre
t +∆y + L

√
ℓ

xpre
t +∆x(∆y) +

L√
u

= u ⇐⇒
∆x(∆y) = −xpre

t

∆y = −ypre
t + L

(√
u−

√
ℓ
) ∣∣∣∣∣ . (A9)

Analogously,

ypre
t +∆y(∆x) + L

√
ℓ

xpre
t +∆x+

L√
u

= ℓ ⇐⇒
∆x = −xpre

t + L

(
1√
ℓ
− 1√

u

)
∆y(∆x) = −ypre

t

∣∣∣∣∣∣ . (A10)
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A.3 Impermanent Loss
Let us assume that it held ℓ < St < u at the time of providing the liquidity. Similarly
as in the section 3.4, the impermanent loss denominated in Y amounts to

St+∆t

(
L√
ℓ
− L√

u
− xt

)
− yt if St+∆t ≤ ℓ,

−

(√
St+∆t

(
xt +

L√
u

)
−

√(
yt + L

√
ℓ

))2

if St+∆t ∈ (ℓ, u),

L
√
u− L

√
ℓ− St+∆txt − yt if St+∆t ≥ u.

(A11)

It is easy to check that the loss function is continuous and negative throughout;
exemplarily, utilizing (A3) and (A5) yields

St+∆t

(
L√
ℓ
− L√

u
− xt

)
− yt = St+∆t

(
L√
ℓ
− L√

St

)
− L

√
St + L

√
ℓ

= L
(√

St −
√
ℓ
)(St+∆t√

ℓSt

− 1

)
≤ 0.

(A12)

If it held St ≤ ℓ < u or ℓ < u ≤ St at the time of providing the liquidity, then one
would not incur any opportunity loss as long as St+∆t ≤ ℓ or St+∆t ≥ u respectively.
Other than that, the above formula prevails.

One argument in favor of Uniswap v3 is that one can achieve greater capital
efficiency with leverage and therefore earn more premiums. Conversely, the leverage
also increases the risk and extent of the impermanent loss. Over-leveraged positions
have been the recurring cause of critical failures in the financial industry over the past
decades. Thus, when facing the situation of the section 3.6, we are not inclined to
believe that leveraging is the solution to the quest for a sustainable ecosystem.

Appendix B Balancer (CPMM with n Assets)

B.1 Notation

Notation Description

xi
t

amount of token i (e.g., XTZ) at time t,
i = 1, 2, . . . , n

Si
t

FX-rate of token i in the numéraire currency (e.g.,
XTZUSD) at time t

ct :=

n∏
i=1

xi
t available liquidity at time t
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B.2 Arbitrage
For the sake of simplicity, we ignore transaction costs. We consider the system of
equations

(i.) (x1
t +∆x1)

n∏
i=2

(xi
t +∆xi) = ct,

(ii.)
x1
t +∆x1

xi
t +∆xi

=
Si
t+∆t

S1
t+∆t

,
(B13)

where (ii.) must hold for i = 2, 3, . . . , n. Thus,

∆x1 =

n

√√√√√√ct ·
n∏

i=2

Si
t+∆t

(S1
t+∆t)

n−1
− x1

t , (B14)

∆xi =
S1
t+∆t

Si
t+∆t

(x1
t +∆x1)− xi

t. (B15)

Notably, it usually requires all components for the regulation. The arbitrage profit
with respect to the numéraire amounts to

−nS1
t+∆tx

1
t+∆t +

n∑
i=1

Si
t+∆tx

i
t = −n · n

√√√√ n∏
i=1

Si
t+∆tx

i
t +

n∑
i=1

Si
t+∆tx

i
t ≥ 0; (B16)

the arithmetic average is larger or equal than the geometric average, and equality
holds if and only if all components are identical. See also the Balancer documentation
for further details.

Appendix C Flat Curve

C.1 Model
We consider a CFMM approach with

F (x, y) = (x+ y)8 − (x− y)8, St =
(xt + yt)

7 − (xt − yt)
7

(xt + yt)7 + (xt − yt)7
; (C17)

see the corresponding GitHub repository. This choice is convenient for pairs of stable
tokens. The isolines F (x, y) ≡ c for c > 0 are a mixture between constant product and
constant sum (CSMM); see the Figure C2. Note that the spot FX-rate for CSMM
is unaffected by transactions. However, liquidity could be removed entirely. The flat
curve model is not analytically tractable; numerical approximations become inevitable
such as, for instance, the Newton–Raphson method. In contrast to the classical CPMM,
the parity Sx

t xt = Sy
t yt is usually not met.

28

Electronic copy available at: https://ssrn.com/abstract=4593669

https://docs.balancer.fi/
https://github.com/tezos-checker/flat-cfmm


0 1 2 3 4 5
0

1

2

3

4

5
CPMM
Flat Curve
CSMM

Fig. C2 Illustration of the implicit isoline in (C17) that is clamped between those of CPMM and
CSMM.
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