

University of Applied Sciences of Eastern Switzerland **IES** INSTITUTE FOR ENERGY SYSTEMS

International Workshop on High Temperature Heat Pumps, Sept. 9, 2017, Kopenhagen Review on High Temperature Heat Pumps – Market Overview and Research Status

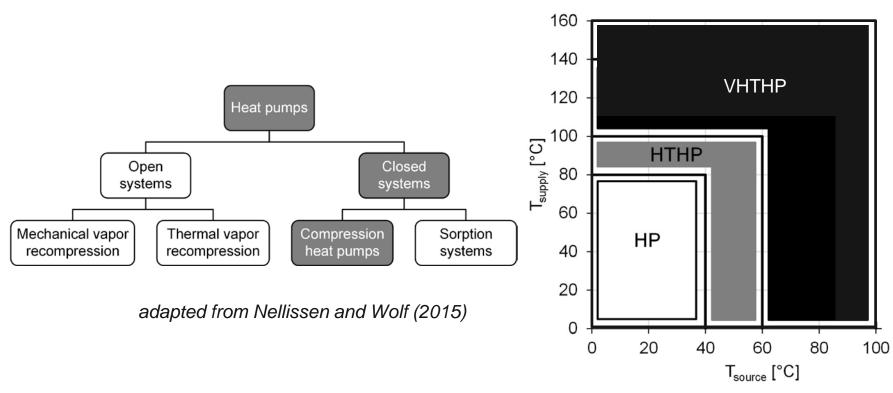
<u>Cordin ARPAGAUS¹</u>, Fréderic BLESS¹, Jürg SCHIFFMANN², Stefan S. BERTSCH¹

¹NTB University of Applied Sciences of Technology Buchs, Switzerland ²Ecole Polytechnique Fédérale de Lausanne, Switzerland

In cooperation with the CTI

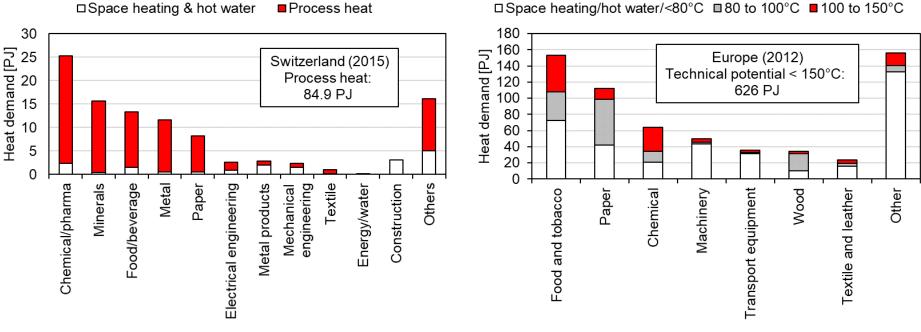
Commission for Technology and Innovation CTI

Outline


- 1. Market overview of commercially available industrial HTHP systems
 - Cycles, refrigerants, application limits, efficiencies
- 2. Research status
 - Screening of research activity
 - Experimental and theoretical studies, cycles, refrigerants, supply temperatures, operating ranges
- 3. Refrigerants
 - Selection criteria, properties, GWP, price, efficiency, safety
- 4. Conclusions

www.ntb.ch/ies

Classification of heat pumps (focus on compression heat pumps) Development of temperature levels



VHTHP: very high temperature heat pump HTHP: high temperature heat pump HP: conventional heat pump

adapted from Bobelin et al. (2012), IEA (2014), Jakobs and Laue (2015), Peureux et al. (2012, 2014) Potential for high temperture heat pumps – Process heat in industry

Theoretical potential for HTHPs in Switzerland

Technical potential of process heat in Europe accessible with industrial heat pumps

Data from BFE (2016), Pulfer and Spirig (2015)

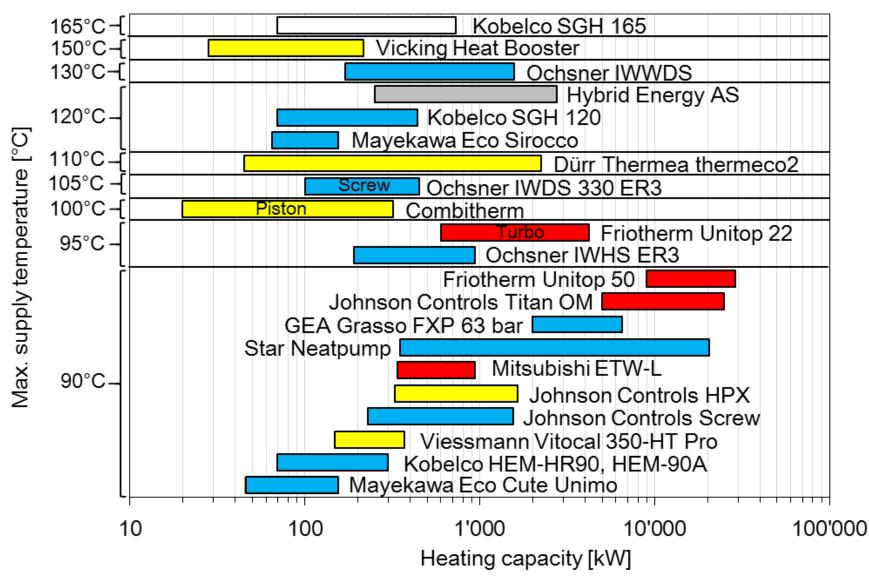
Based on Eurostat data from 2012 of 33 countries, Nellissen and Wolf (2015)

Overview of processes in different industrial sectors Temperature levels and technology readiness level

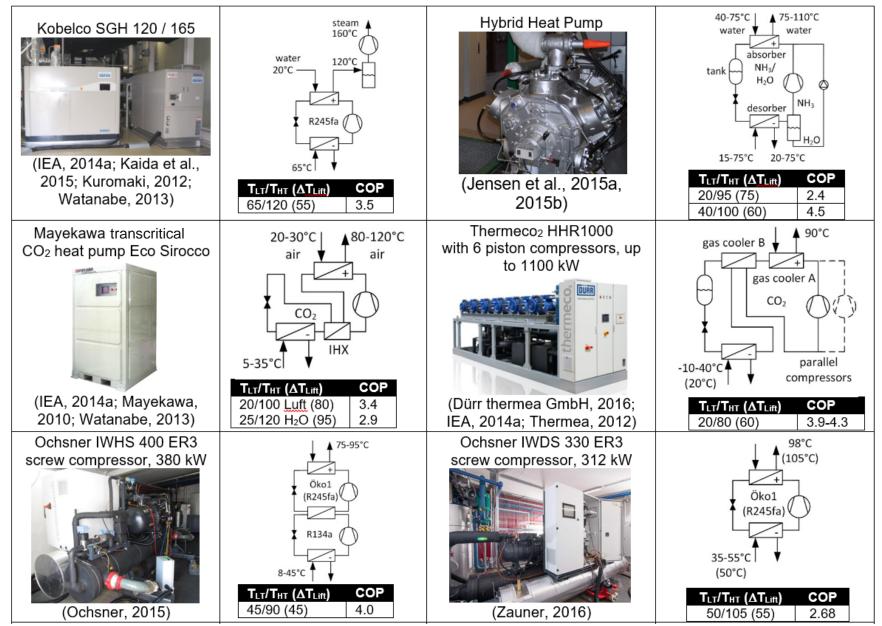
	Temperature Process 20 40 60 80 100 120 140 160 180 200															
Sector	Process	20	4	40	60	80) 1	100) 1:	20 I	140	160) 18	0	200	[°C]
	Drying	+		┝	+	+			_							90 -240
_	Boiling	-		\vdash	+	+										110 - 180
Paper	Bleaching	-													+	40 - 150
	De-inking							T				-			+	50 - 70
	Drying															40 - 250
	Evaporation															40 - 170
	Pasteurization														\top	60 - 150
	Sterilization			Γ											\top	100 - 140
E	Boiling															70 - 120
Food &	Distillation														\top	40 - 100
beverages	Blanching															60 - 90
	Scalding							Τ							\top	50 - 90
	Concentration							Τ								60 - 80
	Tempering															40 - 80
	Smoking															20 - 80
	Destillation			Γ												100 - 300
	Compression							Τ							\top	110 - 170
Chemicals	Thermoforming			Γ				Τ								130 - 160
Chemicals	Concentration			Γ				Τ							\top	120 - 140
	Boiling														\top	80 - 110
	Bioreactions							Τ							\top	20 - 60
Automotive	Resin molding														\top	70 - 130
	Drying															60 - 200
	Pickling														\top	20 - 100
	Degreasing														\top	20 - 100
Metal	Electroplating							Τ							\top	30 - 90
	Phosphating															30 - 90
	Chromating															20 - 80
	Purging															40 - 70

	Temperature													
Sector	Process	20	40) (60 	80 	1	00 1	20 	140	160 	180 	200	[°C]
	Injection modling	+	┥		+	+								90 - 30
Plastic	Pellets drying	\top	\neg						\top					40 - 15
	Preheating	\top			\top							\top		50 - 7
Mechanical	Surface treatment													20 - 12
engineering	Cleaning								1					40 -9
	Coloring													40 - 16
Tautilaa	Drying													60 - 13
Textiles	Washing								Τ					40 - 11
	Bleaching													40 - 10
	Glueing													120 - 1
	Pressing													120 - 1
	Drying													40 - 1
Wood	Steaming													70 - 10
	Cocking													80 - 9
	Staining													50 - 8
	Pickling													40 - 1
	Hot water													20 - 11
Several	Preheating													20 - 10
sectors	Washing/Cleaning													30 - 9
	Space heating								1					20 - 8

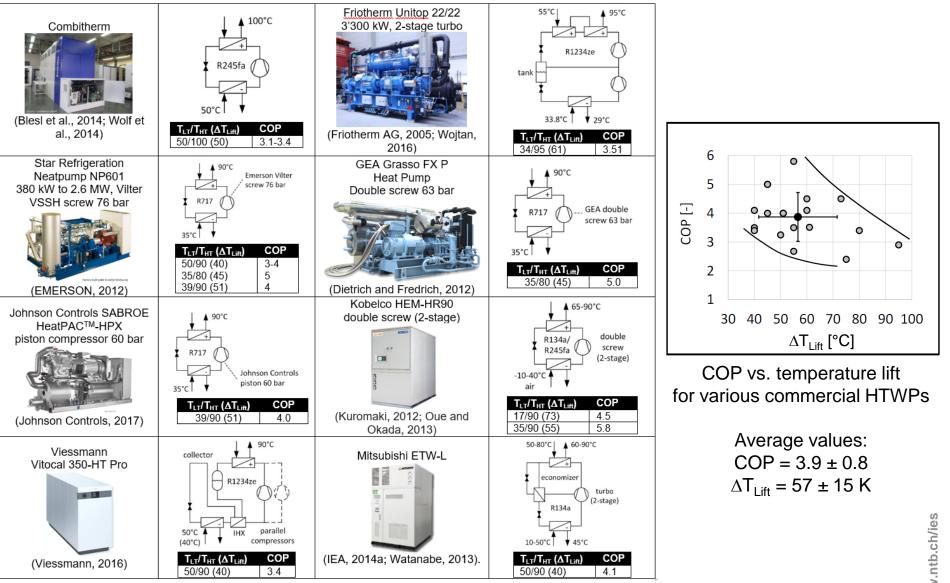
commercial available HP 70 - 100°C, key technology prototype status, technology development, HTHP 100 - 140°C laboratory research, functional models, proof of concept, VHTHP > 140°C


<u>Data sources:</u> Brunner et al. (2007), Hartl et al. (2015), IEA (2014), Kalogirou (2003), Lambauer et al. (2012), Lauterbach et al. (2012), Noack (2016), Ochsner (2015), Rieberer et al. (2015), Watanabe (2013), Weiss (2007, 2005), Wolf et al. (2014)

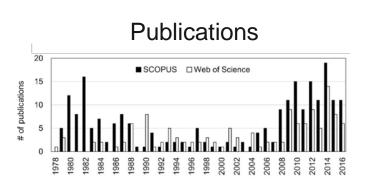
Selection of industrial HTHPs with supply temperatures > 90°C


Manufacturer	Product	Refrigerant	Max. supply temp.	Heating capacity	Compressor type
Kobelco (Steam Grow Heat Pump)	SGH 165 SGH 120 HEM-HR90, HEM-90A	R134a/R245fa R245fa R1r34a/R245fa	165°C 120°C 90°C	70 – 660 kW 70 – 370 kW 70 – 230 kW	Double screw
Vicking Heating Engines AS	HeatBooster	R1336mzz(Z) R245fa	150°C	28 – 188 kW	Piston
Ochsner	IWWDS IWDS 330 ER3 IWHS ER3	R134a/ÖKO1 (R245fa)	130°C 105°C 95°C	170 – 750 kW (twin unit 1.5 MW) 100 – 350 kW 190 – 750 kW	Screw
Hybrid Energy	Hybrid Heat Pump	R717 (NH₃)	120°C	0.25 – 2.5 MW	Piston
Mayekawa	Eco Sirocco Eco Cute Unimo	R744 (CO ₂) R744 (CO ₂)	120°C 90°C	65 – 90 kW 45 – 110 kW	Screw
Dürr Thermea	thermeco2	R744 (CO2)	110°C	45 – 2'200 kW	Piston
Combitherm	Sonderanfertigung	R245fa	100°C	20 – 300 kW	Piston
Friotherm	Unitop 22 Unitop 50	R1234ze(E) R134a	95°C 90°C	0.6 – 3.6 MW 9 – 20 MW	Turbo (2-stage)
Star Refrigeration	Neatpump	R717 (NH₃)	90°C	0.35 – 15 MW	Screw
GEA Refrigeration	GEA Grasso FX P 63 bar	R717 (NH₃)	90°C	2 – 4.5 MW	Double screw
Johnson Controls	HeatPAC HPX HeatPAC Screw Titan OM	R717 (NH₃) R717 (NH₃) R134a	90°C 90°C 90°C	326 – 1'324 kW 230 – 1'315 kW 5 – 20 MW	Piston Screw Turbo
Mitsubishi	ETW-L	R134a	90°C	340 – 600 kW	Turbo (2-stage)
Viessmann	Vitocal 350-HT Pro	R1234ze(E)	90°C	148 – 223 kW	Piston (2-3 stages)

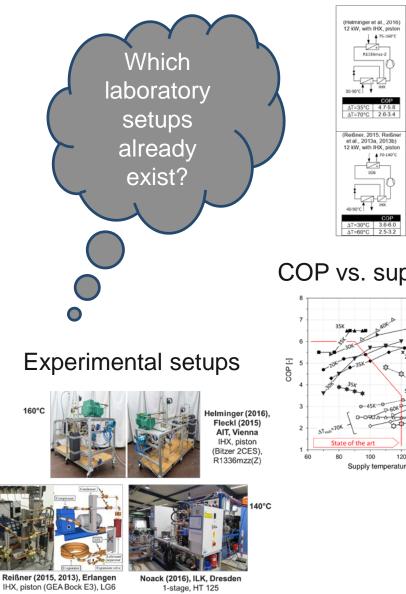
Industrial HTHPs -

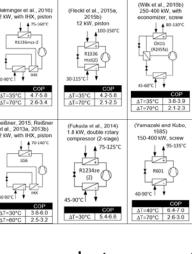

Heating capacities vs. achievable supply temperatures

Commercial HTHPs – cycles, COPs and pictures

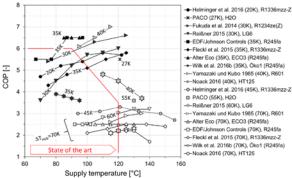

Commercial HTHPs – cycles, COPs and pictures

Research status on HTHPs –


Publications, projects, cycles, operating ranges


140°

Research projects


Organisation, Project partners	Cycle	Compressor type	Refrigerant								Heating capacity (kW]	Reference	
				20	40	60	80	100	120	140 160			
Austrian Institute of Technology (AIT), Wen, Chemours, Bitzer	IHX	piston	R1336mzz-Z	H							12	(Helminger et al., 2016)	
Austrian institute of Technology (AIT), Wien, Chemours, Bitzer	1-stage	piston	R 1336mzz-Z			T					12	(Flecki et al., 2015a, 2015b)	
PACO, University Lyon, EDF Electricité de France	flash tank	double screw	H ₂ O (Wasser)						-		300	(Chamoun et al., 2014, 2013, 2012e, 2012b)	
Institut für Luft- und Kältetechnik (ILK). Dresden	1-stage	na.	HT 125	E	1						12	(Noack, 2016)	
Friedrich-Alexander Universität Erlangen-Nürnberg, Siemens	нх	piston	LG6	H							10	(Reißner, 2015; Reißne et al., 2013a, 2013b)	
Atter ECO, EDF Electricité de France	IHX and subcooler	double scroll	ECO3 (R2451a)								50-200	(Bobelin et al., 2012; IEA, 2014a)	
Tokyo Electric Power Company, Japan	1-stage	screw	R601								150-400	(Yamazaki and Kubo, 1985)	
Austrian Institute of Technology (AIT), Wien, Edtmayer, Ochsner	economizer	screw	ОКО1 (R245fa)								260-400	(Wilk et al., 2016b)	
Kyushu University, Fukuoka, Japan	1-stage	double rotary (2-stage)	R12342e(Z)								1.8	(Fukuda et al., 2014)	
Johnson Controls, EDF Electricité de France	economizer and IHX	double screw centrifugal turbo	R2451a		T					1	300-500 900-1'200	(IEA, 2014a)	

Cycles

COP vs. supply temperature

-+-Wilk et al. 2016b (35K), Öko1 (R245fa) -Yamazaki und Kubo 1985 (40K), R601 O-Helminger et al. 2016 (45K), R1336mzz-Z

www.ntb.ch/ies

Research activity on HTHPs – Number of publications

Number of publications with search key word «high temperature heat pump» in databases SCOPUS (<u>www.scopus.com</u>) and Web of Science (<u>www.webofknowledge.com</u>)

Experimental research projects on HTHPs

Organisation, Project partners	Cycle	Compressor type	Refrigerant		Sou	rce a	and s	upply	temp	eratur	es [°C]		Heating capacity [kW]	Reference
				20	40	0	60	80	100	120	140 í	160		
Austrian Institute of Technology (AIT), Wien, Chemours, Bitzer	ІНХ	piston	R1336mzz-Z										12	(Helminger et al., 2016)
Austrian Institute of Technology (AIT), Wien, Chemours, Bitzer	1-stage	piston	R1336mzz-Z										12	(Fleckl et al., 2015a, 2015b)
PACO, University Lyon, EDF Electricité de France	flash tank	double screw	H ₂ O (Wasser)										300	(Chamoun et al., 2014, 2013, 2012a, 2012b)
Institut für Luft- und Kältetechnik (ILK), Dresden	1-stage	n.a.	HT 125										12	(Noack, 2016)
Friedrich-Alexander Universität Erlangen-Nürnberg, Siemens	IHX	piston	LG6										10	(Reißner, 2015; Reißner et al., 2013a, 2013b)
Alter ECO, EDF Electricité de France	IHX and subcooler	double scroll	ECO3 (R245fa)										50-200	(Bobelin et al., 2012; IEA, 2014a)
Tokyo Electric Power Company, Japan	1-stage	screw	R601										150-400	(Yamazaki and Kubo, 1985)
Austrian Institute of Technology (AIT), Wien, Edtmayer, Ochsner	economizer	screw	ÖKO1 (R245fa)										250-400	(Wilk et al., 2016b)
Kyushu University, Fukuoka, Japan	1-stage	double rotary (2-stage)	R1234ze(Z)										1.8	(Fukuda et al., 2014)
Johnson Controls, EDF Electricité de France	economizer and IHX	double screw centrifugal turbo	R245fa										300-500 900-1'200	(IEA, 2014a)

Experimental setups

160°C

Expansion valve

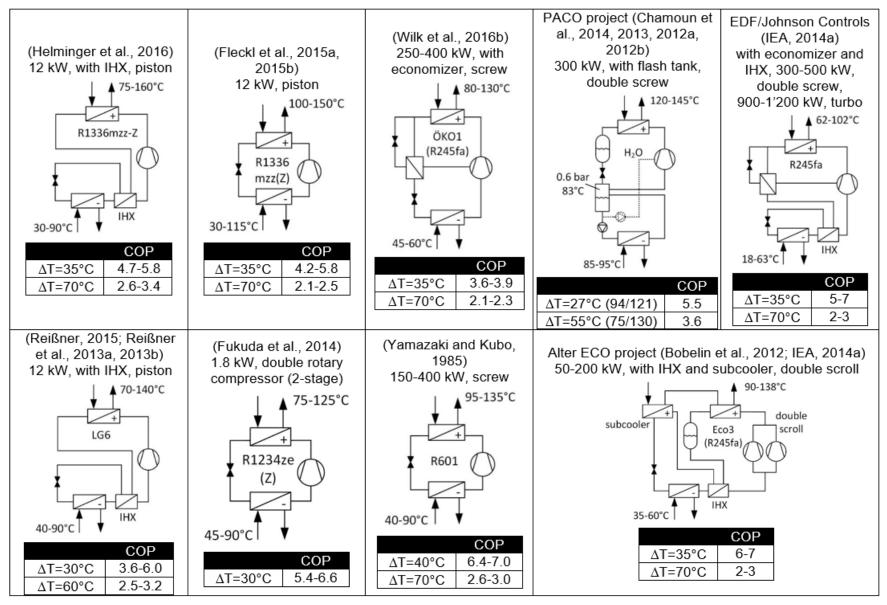
Reißner (2015, 2013), Erlangen 1-stage with IHX, piston (GEA Bock E3), LG6

Evaporator

Noack (2016), ILK, Dresden 1-stage cycle, HT 125

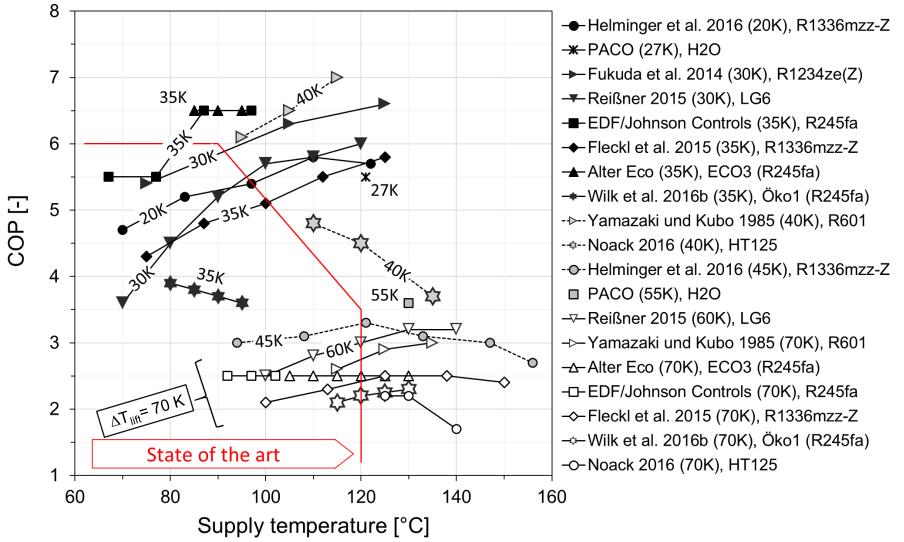
140°C

Fleckl (2015)


AIT, Vienna

IHX, piston

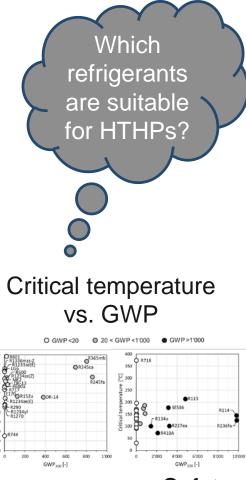
R1336mzz(Z)


140°C

Cycles and achieved COPs of experimental research projects

Achieved COPs of experimental research projects vs. supply temperature at constant temperature lifts (ΔT_{lift})

 (ΔT_{lift}) , refrigerant

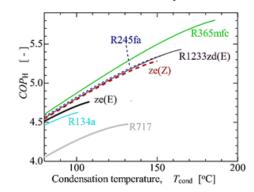

Refrigerants for HTHPs

Selection criteria

Criteria	Required properties
Thermal suitability	High critical temperature, low critical pressure
Environmental	ODP = 0, low GWP, short atmospheric life
Safety	Non-toxic, non-combustible (safety group A1)
Efficiency	High COP, low pressure ratio, minimal overheat to prevent fluid compression, high volumetric capacity
Availability	Available on the market, low price
Other factors	Good solubility in oil, thermal stability of the refrigerant-oil mixture, lubricating properties at high temperatures, material compatibility with steel and copper

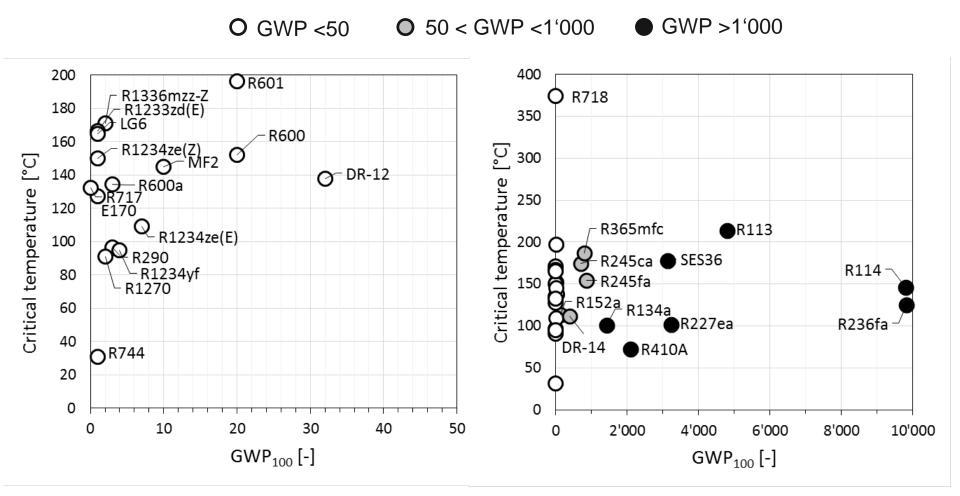
Refrigerant properties

		A			002				N
Refrigerant	Description	Chemical formula	Terr	Pere [bar]	(-1	CWP100	\$G	Bp.	[om(2]
Ethane line		Torring a	1.01	[oan]				1.01	Territor,
R113	1,1,2-Trichloro-1,2,2-trifluoroethane	CCI_FCCIF2	214.0	33.9	0.6	4'800	A1	47.6	187.4
R114	1.2-Dichloro-1,1.2.2-tetrafluoroethane	CCIF;CCIF;	145.7	32.6	1	9/800	A1	3.8	170.9
R134a	1,1,1,2-Tetrafluoroethane	CH ₂ FCF ₂	101.1	40.6	0	1'430	A1	-26.1	102.0
R152a	1,1-Difluoroethane	CH1CHF2	113.3	45.2	0	124	A2	-24.0	66.1
Propane line			_						
R245ca	1,1,2,2,3-Pentafluoropropane	CHF;CF;CH;F	174.4	30.3	0	693	n.v.	25.1	134.0
R245f8	1,1,2,2,3-Pentafluoropropane	CHF2CH2CF3	154.0	36.5	0	858	81	14.9	134.0
Fi236fa	1,1,1,3,3,3-Hexafluoropropane	CF ₁ CH ₂ CF ₃	124.9	32.0	0	9'810	A1	-1.4	152.0
R227ea	1,1,1,2,3,3,3-Heptafuoropropane	CF_CHFCF_	101.8	29.3	0	3'220	A1	-15.6	170.0
R290	Propane	CH_CH_CH_	96.7	42.5	0	3	A3	-42.1	44.1
R1270	Propene	CH ₂ CH=CH ₂	91.1	45.6	0	2	A3	-47.6	42.1
Butane line									
R365mfc	1,1,1,3,3-Pentafluorobutane	CF1CH2CF2CH3	186.9	32.7	0	804	A2	40.2	148,1
SE\$36	Pentafluorobutane	R365mft/PFPE65/35	177.6	28.5	0	3'126	A2	35.6	184.6
Hydrocarbon	5								
R601	Pentane	CHCHCHCHCH	196.6	33.7	0	20	A3	36.1	72.2
R600	Butane	CH ₁ CH ₂ CH ₂ CH ₃ CH ₃	152.0	38.0	0	20	A3	-0.5	58.1
R600a	iscbutane	CH(CH ₃) ₂ CH ₃	134.7	36.3	0	3	A3	-11.8	58.1
Refrigerant n	nixtures								
R410A	R32/R125 (50/50)	CH_F_CHF_CF1	72.6	49.0	0	2'088	A1	-51.5	72.6
Hydro Fluoro	Olefines (HFOs)								
R1336mzz-Z	1,1,1,4,4,4-Hexafluoro-2-butene	CF3CH+CHCF3(Z)	171.0	29.0	0	2	A1	33,4	164.1
R1233zc(E)	Tetrafluorpropene	CF ₁ CH=CHCI(trans)	166.5	36.2	0.0003	1	A1	18.0	130.5
R1234ze(Z)	cis-1,3,3,3-Tetrafluoro-1-propene	CF;CH=CHF(cis)	150.1	35.3	0	1	A2	9.8	114.0
R123426(E)	trans-1,3,3,3-Tetrafluoro-1-propene	CF3CH=CHF(trans)	109.4	36.4	0	7	A2L	-19.0	114.0
R1234yf	2.3.3.3-Tetrafluoro-1-propene	CF1CF=CH2	94.7	33.8	0	4	A2L	-29.5	114.0
DR-14	n.a.	n.a.	111.6	30.6	0	380	A1	-20.5	n.v.
DR-12	n.a.	n.a.	137.7	30.0	0	32	1	7.5	n.v.
LGE	n.a.	n.a.	165.0	n.a.	0	1	n.a.	n.a.	n.a.
MF2	1.4.	n.a.	145.0	n.a.	0	10	n.a.	n.a.	n.a.
Others									
E170	Dimethyl ether	CH ₂ OCH ₃	127.2	63.4	0	1	٨3	-24.8	46.1
R718	Water	H ₂ O	373.9	220.6	0	0	A1	100.0	18.0
R717	Animonia	NH ₂	132.3	113.3	0	0	821.	-33.3	17.0
R744	Carbon dioxide	CO2	31.0	73.8	0	1	A1	-78.5	44.0


Safety

	higher	A3	R290, R1270, R601, R600, R600a, E170	B3				
₹			R600, R600a, E170					
Flammability	lower	A2	R152a, R365mfc, SES36, R1234ze(Z), R1234ze(E), R1234yf	B2	R717			
E	no flame propagation	A1	R113, R114, R134a, R236fa, R227ea, R410A, R1336mzz-Z R1233zd(E), DR-14, DR-12, R718, R744	B1	R245ca, R245fa			
			lower	higher				
		Toxicity						

Price


Refrigerant	CAS Nr.	Container [kg]	Price per kg [Euro]	Factor to R134a
		12	8.55	1.0
R134a	811-97-2	28	8.55	1.0
		63	8.25	1.0
	75 40 5 (500()	10	8.85	1.0
R410A	75-10-5 (50%) 354-33-6 50%)	22	8.85	1.0
	354-33-6 50%)	53	8.60	1.0
R744	124-38-9	30	9.00	1.1
		11	49.50	5.8
R1234ze(E)	1645-83-6		69.90	8.2
		59	48.25	5.6
R1233zd		14	62.70	7.3
R245fa	460-73-1	14	63.65	7.4
R240Ia	400-73-1	14	87.90	10.3
P1224vf	754-12-1	5	163.35	19.1
R1234yf	704-12-1	5	229.60	26.9

Efficiency

Criteria	Required properties								
Thermal suitability	High critical temperature, low critical pressure								
Environmental	ODP = 0, low GWP, short atmospheric life								
Safety	Non-toxic, non-combustible (safety group A1)								
Efficiency	High COP, low pressure ratio, minimal								
	overheat to prevent fluid compression, high								
	volumetric capacity								
Availability	Available on the market, low price								
Other factors	Good solubility in oil, thermal stability of the								
	refrigerant-oil mixture, lubricating properties								
	at high temperatures, material compatibility								
	with steel and copper								

Critical temperature vs. GWP

Safety Group Classification

ty	higher	A3	R290, R1270, R601, R600, R600a, E170	B3	-				
Flammability	lower	A2	R152a, R365mfc, SES36, R1234ze(Z), R1234ze(E), R1234yf	B2	R717				
E	no flame propagation	A1	R113, R114, R134a, R236fa, R227ea, R410A, R1336mzz-Z R1233zd(E), DR-14, DR-12, R718, R744	B1	R245ca, R245fa				
		lower			higher				
		Toxicity							

according to DIN EN 378-1 (2008) and ASHRAE 34

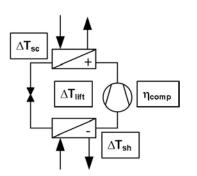
Refrigerants – properties

Refrigerant	Description	Chemical formula	T _{crit} [°C]	p _{crit} [bar]	ODP [-]	GWP ₁₀₀ [-]	SG	Bp. r°C1	M [g/mol]
Ethane line		Tormana		[Buil]					[8,1101]
R113	1,1,2-Trichloro-1,2,2-trifluoroethane	CCl ₂ FCClF ₂	214.0	33.9	0.8	4'800	A1	47.6	187.4
R114	1,2-Dichloro-1,1,2,2-tetrafluoroethane	CCIF ₂ CCIF ₂	145.7	32.6	1	9'800	A1	3.8	170.9
R134a	1,1,1,2-Tetrafluoroethane	CH ₂ FCF ₃	101.1	40.6	0	1'430	A1	-26.1	102.0
R152a	1,1-Difluoroethane	CH ₃ CHF ₂	113.3	45.2	0	124	A2	-24.0	66.1
Propane line									
R245ca	1,1,2,2,3-Pentafluoropropane	CHF ₂ CF ₂ CH ₂ F	174.4	39.3	0	693	n.v.	25.1	134.0
R245fa	1,1,2,2,3-Pentafluoropropane	CHF ₂ CH ₂ CF ₃	154.0	36.5	0	858	B1	14.9	134.0
R236fa	1,1,1,3,3,3-Hexafluoropropane	CF ₃ CH ₂ CF ₃	124.9	32.0	0	9'810	A1	-1.4	152.0
R227ea	1,1,1,2,3,3,3-Heptafluoropropane	CF ₃ CHFCF ₃	101.8	29.3	0	3'220	A1	-15.6	170.0
R290	Propane	CH ₃ CH ₂ CH ₃	96.7	42.5	0	3	A3	-42.1	44.1
R1270	Propene	CH ₃ CH=CH ₂	91.1	45.6	0	2	A3	-47.6	42.1
Butane line									
R365mfc	1,1,1,3,3-Pentafluorobutane	CF ₃ CH ₂ CF ₂ CH ₃	186.9	32.7	0	804	A2	40.2	148.1
SES36	Pentafluorobutane	R365mfc/PFPE65/35	177.6	28.5	0	3'126	A2	35.6	184.5
Hydrocarbon	5								
R601	Pentane	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	196.6	33.7	0	20	A3	36.1	72.2
R600	Butane	CH ₃ CH ₂ CH ₂ CH ₃	152.0	38.0	0	20	A3	-0.5	58.1
R600a	Isobutane	CH(CH ₃) ₂ CH ₃	134.7	36.3	0	3	A3	-11.8	58.1
Refrigerant m	nixtures								
R410A	R32/R125 (50/50)	CH ₂ F ₂ /CHF ₂ CF ₃	72.6	49.0	0	2'088	A1	-51.5	72.6
Hydro Fluoro	Olefines (HFOs)								
R1336mzz-Z	1,1,1,4,4,4-Hexafluoro-2-butene	CF ₃ CH=CHCF ₃ (Z)	171.3	29.0	0	2	A1	33.4	164.1
R1233zd(E)	Tetrafluorpropene	CF ₃ CH=CHCI(trans)	166.5	36.2	0.0003	1	A1	18.0	130.5
R1234ze(Z)	cis-1,3,3,3-Tetrafluoro-1-propene	CF ₃ CH=CHF(cis)	150.1	35.3	0	1	A2	9.8	114.0
R1234ze(E)	trans-1,3,3,3-Tetrafluoro-1-propene	CF ₃ CH=CHF(trans)	109.4	36.4	0	7	A2L	-19.0	114.0
R1234yf	2,3,3,3-Tetrafluoro-1-propene	CF ₃ CF=CH ₂	94.7	33.8	0	4	A2L	-29.5	114.0
DR-14	n.a.	n.a.	111.6	39.6	0	380	A1	-20.5	n.v.
DR-12	n.a.	n.a.	137.7	30.0	0	32	1	7.5	n.v.
LG6	n.a.	n.a.	165.0	n.a.	0	1	n.a.	n.a.	n.a.
MF2	n.a.	n.a.	145.0	n.a.	0	10	n.a.	n.a.	n.a.
Others									
E170	Dimethyl ether	CH ₃ OCH ₃	127.2	53.4	0	1	A3	-24.8	46.1
R718	Water	H ₂ O	373.9	220.6	0	0	A1	100.0	18.0
R717	Ammonia	NH ₃	132.3	113.3	0	0	B2L	-33.3	17.0
R744	Carbon dioxide	CO ₂	31.0	73.8	0	1	A1	-78.5	44.0

T_{crit} = critical temperature

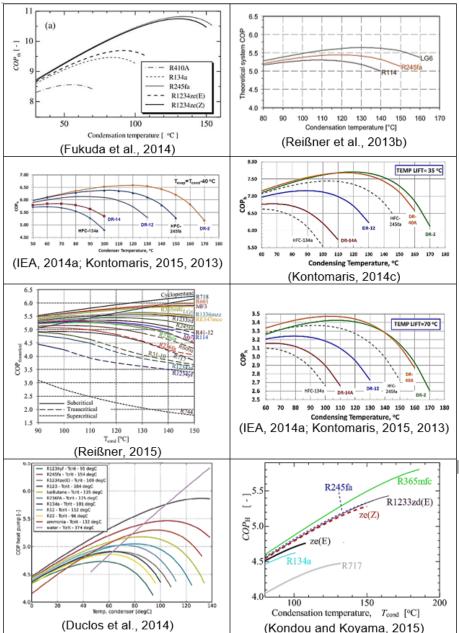
p_{crit} = critical pressure

ODP = Ozone Depletion Potenial (R11=1.0)

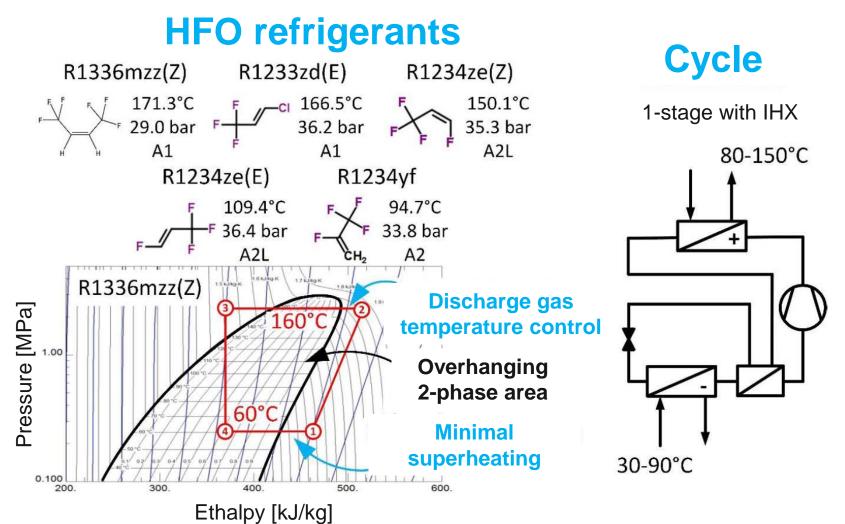

GWP = Global Warming Potential (CO2=1.0, 100 years EU F-Gas regulation 517/2014)

SG = Safety group (DIN EN 378-1, 2008, ASHRAE 34)

Bp. = Boiling point at 1.013 bar


M = Molecular weight

Theoretical studies – Efficiency range for 1-stage cycles with different refrigerants



 $\begin{array}{l} \Delta T_{\text{lift}} \text{: temperature lift} \\ \Delta T_{\text{sh}} \text{: superheating} \\ \Delta T_{\text{sc}} \text{: subcooling} \\ \eta_{\text{comp}} \text{: isentropic compressor} \\ & \text{efficiency} \end{array}$

Reference	∆T _{sh}	∆T _{sc}	η _{comp}	∆T lift		_		_	-	OP	-		
	[K]	[K]	[-]	[K]	2	3	4	5	6	78	9	10	11
Fukuda et al. (2014)	3	20	1	35									
Kontomaris (2014)	5	5	0.8	35									
IEA (2014), Kontomaris (2015, 2013)		5	0.8	40									
Duclos et al. (2014)	10	5	0.75	45									
Reißner (2015)	5	5	0.8	50		I							
Reißner et al. (2013)	5	5	0.8	50									
IEA (2014), Kontomaris (2015, 2013)		5	0.8	70									
Kondou and Koyama (2015)	3	60	1	80									

Possible concept for a HTHP laboratory prototype

Decition criteria:

- 1) Thermodynamic suitability (T_{crit} > 150°C, allows subcritical, good efficiency at high temperatures)
- 2) Environmental compatibility (GWP <10, ODP = 0, future-proof according to F-Gas regulation)
- 3) Safety (no or only low flammability)
- 4) Natural refrigerants R600 and R600a excluded due to flammability (A3), other refrigerants due to lack of information and availability

Conclusions – Market overview

- More than 20 HTHP models identified with supply temperatures > 90°C from 13 manufacturers (e.g. Vicking HeatBooster with 150°C, Ochsner IWWDS with 130°C, Kobelco SGH120, Mayekawa Eco Sirocco, and Hybrid Energy Heat Pump with 120°C)
- Heat source: water, brine, waste heat (17 to 65°C)
- **COP:** 2.4 to 5.8 at a temperature lift of 40 to 95 K
- Heating capacity: from about 20 kW to 20 MW
- Refrigerants: R245fa, R717 (NH3), R744 (CO2), R134a, R1234ze(E)
- **Compressors:** 1- and 2-shaft screws, 2-stage turbo, pistons (parallel)
- **Cycles:** usually 1-stage, optimization by IHX, parallel compressors, economizer, intermediate injection, 2-stage cascade (R134a/R245fa) or with a flash economizer

Conclusions – Research status

- **Highest supply temperature of 160°C** at AIT (Vienna), 1-stage cycle with IHX and R1336mzz(Z)
- At least 10 research projects reached > 100°C
- **Heating capacity:** lab scale 12 kW, larger prototypes >100 kW
- COPs (at 120°C supply temperature):
 5.7 to 6.5 (30 K temperature lift), 2.2 to 2.8 (70 K)
- **Cycles all 1-stage:** partly with IHX and/or economizer with intermediate injection
- Refrigerants: R1336mzz(Z), R718 (H2O), R245fa, R1234ze (Z), R601, LG6 (Siemens), ÖKO1 (contains R245fa, Ochsner), ECO3 (R245fa, Alter ECO), HT125 (ILK, Dresden)
- **Compressors:** piston in lab systems
- HFO refrigerants: thermodynamic suitable, good efficiency, GWP <10, ODP = 0, safe, future-proof according to F-Gas
 regulation

Sciences of Technology Buchs

University of Applied Sciences of Eastern Switzerland

INSTITUTE FOR ENERGY SYSTEMS

Thank you for your attention!

Contact details:

cordin.arpagaus@ntb.ch +41 81 755 34 94

IES

https://www.ntb.ch/projekt/hoch temperatur-waermepumpe/

NTB University of Applied Sciences of Technology Buchs, Switzerland

Campus Buchs 9471 Buchs office@ntb.ch

Campus St. Gallen 9013 St. Gallen www.ntb.ch

HTW Chur (Cooperation Partner) 7004 Chur www.htwchur.ch