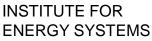
Industrial heat pump applications in Switzerland – Heat pump integration case studies

WS-4 – Workshop: Successful Applications of Industrial Heat Pumps

Dr. Cordin Arpagaus

NTB Buchs

NTE



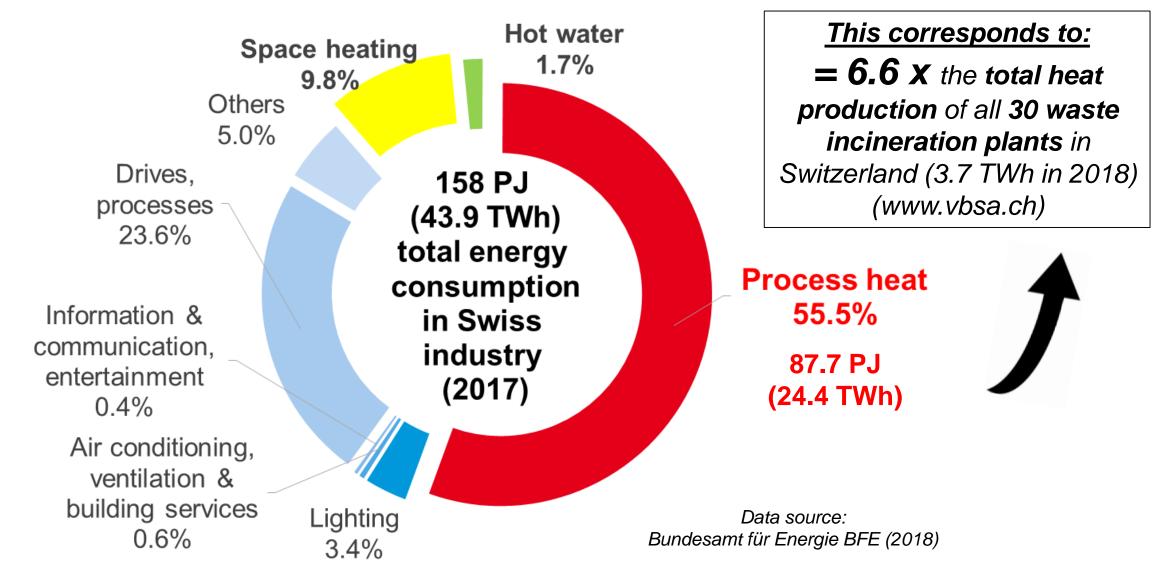
Interstate University of Applied Sciences of Technology Buchs

University of Applied Sciences of Eastern Switzerland

ICR 2019, The 25th IIR International Congress of Refrigeration Montréal, Québec, Canada August 24-30, 2019

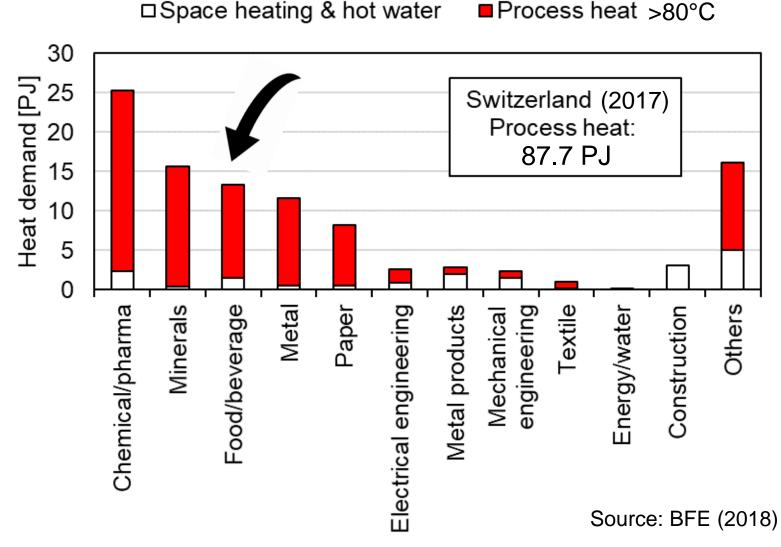
Content

- Introduction to Industrial Heat Pumps in Switzerland
- Application examples in the food industry
- Conclusions



Industrial energy consumption

Image: NTB Image: Interstate University of Applied Sciences of Technology Buchs University of Applied Sciences


of Eastern Switzerland

Process heat demand in Switzerland

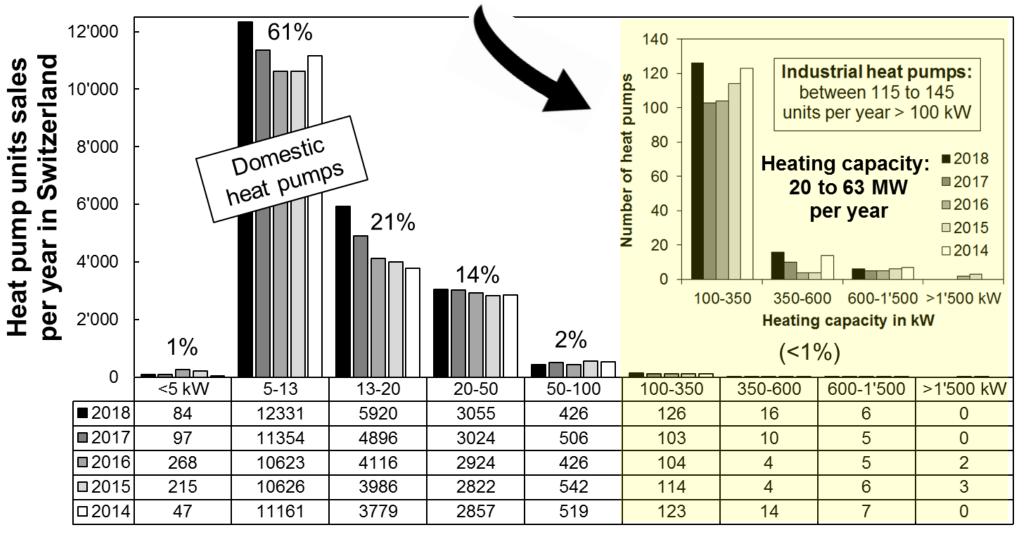
Industrial energy consumption – Heat demand by industrial sector

Potential for industrial heat pumps in Switzerland

Growing importance of heat pumps in Swiss industry (expert survey)

Priority 1: Food

Priority 2: Chemistry,
 Pharmaceuticals, Paper,
 Mechanical Engineering &
 Textiles


 Priority 3: Metal products, metals, minerals

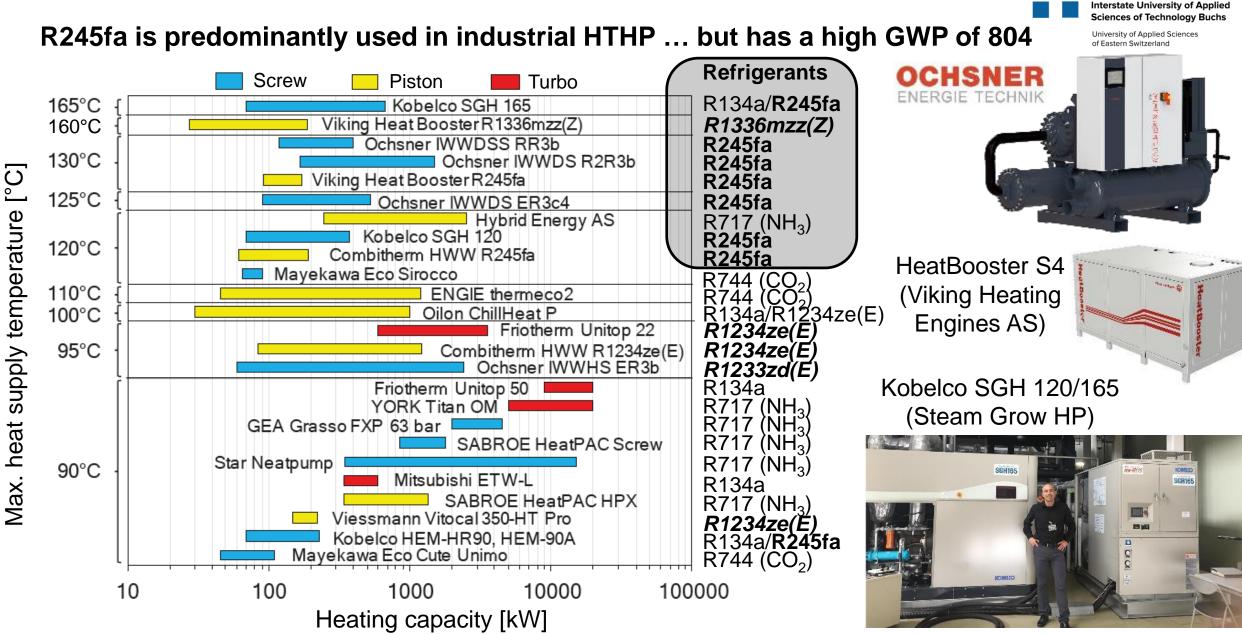
Source: Wolf et al. (2017)

of Eastern Switzerland

Industrial heat pump sales between 115 and 145 units per year

Data source: www.fws.ch

Heating capacity in kW and unit sales per year


Market view

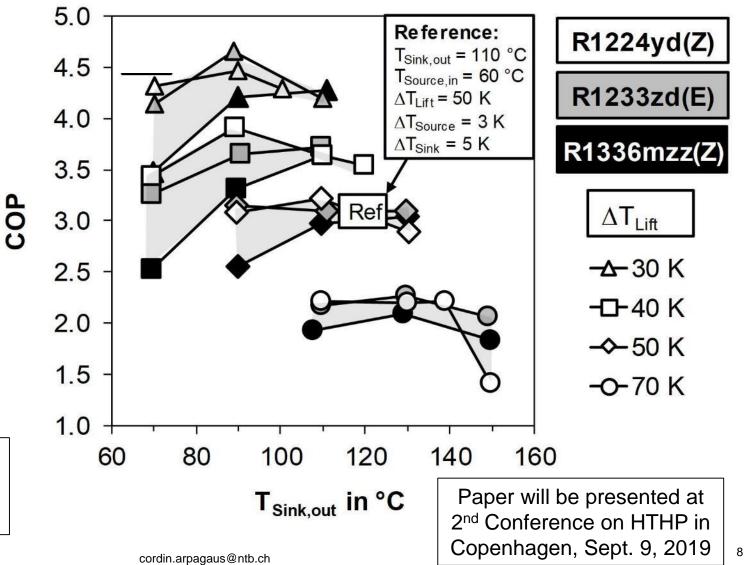
- Low level of awareness of the technical possibilities and economically feasible application potential of industrial heat pumps among users, consultants, investors, system planners, manufacturers and installers
- Lack of knowledge about the integration of heat pumps into existing industrial processes
- **Tailor-made designs**, i.e. small batch sizes (low economies of scale)
- Longer amortization periods than for gas or oil-fired boilers (required are ≤ 3 years). With lower electrical current and higher gas prices smaller amortization periods are reached.
- **Competing heating technologies** (with fossil fuels at low energy prices)
- Requirements of heat storage to compensate for the time lag between demand and supply (e.g. heat pump for band load, gas boiler for heating peaks)
- Lack of available compressors for high temperatures and refrigerants with low global warming potential (GWP) and zero ozone depletion potential (ODP)

> 26 industrial HTHP products with heat supply temperature ≥ 90 °C available

cordin.arpagaus@ntb.ch

ΝΤΒ

The next step ... testing new HFO & HCFO refrigerants

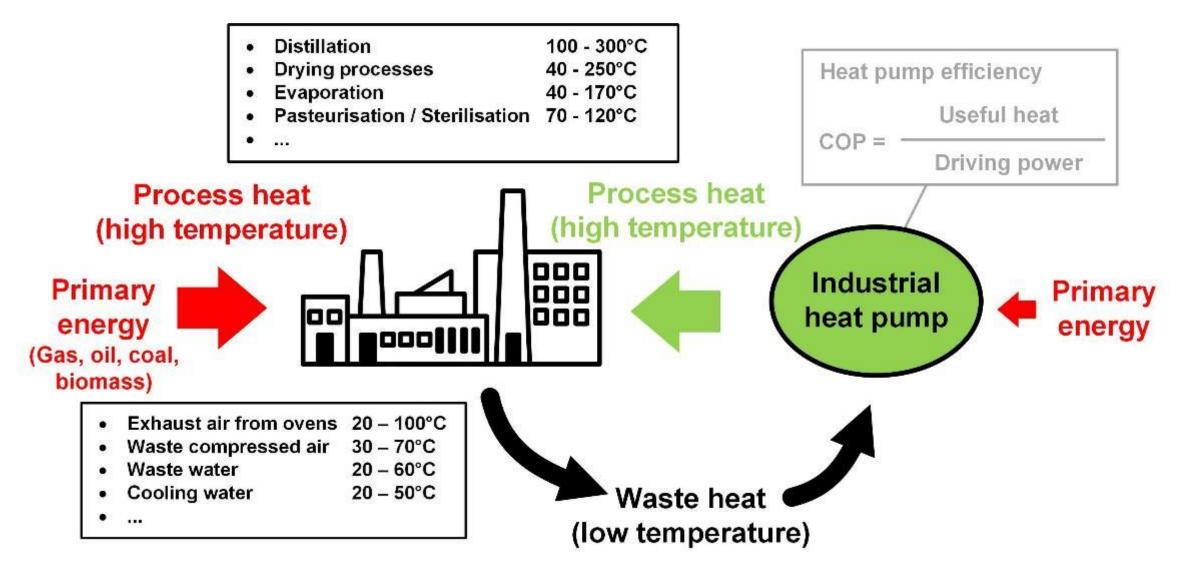


of Eastern Switzerland

Laboratory scale HTHP at NTB Buchs to research new low GWP HFO and HCFO refrigerants R1224yd(Z), R1233zd(E), and R1366mzz(Z)

Paper in TS-413.2 – Technical Session Industrial Heat Pumps (3), August 29, 2019 10:40 to 12:00, Room 524b

ICR 2019, August 28, 2019


University of Applied Sciences of Eastern Switzerland

Application examples in Switzerland (food applications)

of Eastern Switzerland

Efficient transformation of useful (waste) heat to higher temperatures

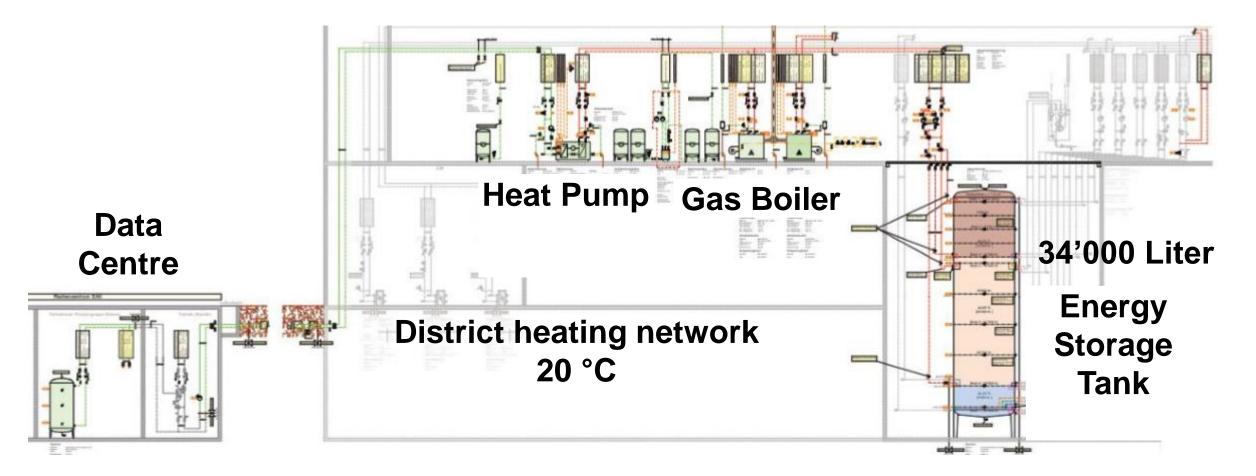
Cheese Factory in Gais Appenzell

University of Applied Sciences of Fastern Switzerland

Data Centre

Waste heat from server rooms 16 to 20 °C ICR 2019, August 28, 2019

~ 800 kW cooling capacity	Data centre	Muffer Charter
TS Gewerke Forma	SP I	District
Cheese Factory		heating network


Cheese Factory

- Energy demand ~1'800 MWh/a
- ~10 Mio. liters of milk per year
- ~300 tons of cheese per year
- **Temperature levels:**
- istrict Heat recovery (washing water, ventilation) heating): **<42** °C
 - Space heating/hot water (storage): 65 °C
- etwork Process heat 1 (cheese vats, cleaning water): **92** °C
 - **Process heat 2** (multi-purpose heater, pasteurisation): **105 °C** 11

NTB Interstate University of Applied Sciences of Technology Buchs University of Applied Sciences

of Eastern Switzerland

Cheese Factory in Gais Appenzell

Source: Amstein + Walthert

Cheese Factory in Gais Appenzell

- IWWHS 570 ER6c2
- ~520kW
- 2-stage screw compressor

Economizer cycle

- Refrigerant mass flow ↑
- Discharge temp.
- Subcooling ↑ (COP ↑)

R1234ze(E)

(130 kg, safety group: A2L, mildly flammable, special measures for fire protection and escape routes)

 2020/21 first operation (using waste heat from data centre)

Performance data (W18-14/W82-92)

Interstate University of Applied Sciences of Technology Buchs

University of Applied Sciences

Part load (%)	100	75	50
Effective part load (%)	100	81	62
Condenser heating capacity (kW)		419	321
Condenser water flow rate (m ³ /h)	44.7	36.0	27.6
Temperature difference condenser (K)		10.0	10.0
Evaporator capacity (kW)		264	195
Evaporator water flow rate (m ³ /h)		82.7	82.7
Temperature difference evaporator (K)		2.7	2.0
Compressor power (kW)		155	126
COP _H (-)		2.70	2.55

cordin.arpagaus@ntb.ch

(A)

Chocolate Factory in Flawil

University of Applied Sciences of Eastern Switzerland

HP manufacturer: CTA AG Contractor: Seiz AG Consultant: Carnotech AG

Temperature range from 5 to 70 °C Space for 8 heat pumps à 220 kW <u>Application: Cooling and heating of</u> chocolate conching machines Savings fossil fuels = 2'590 MWh Savings CO_2 emissions = 30% (510 t/a)

		Cooling	Heating
	Cooling capacity	222.6 kW	183.7 kW
-	Electrical power	70.4 kW	96.8 kW
	Heat source in/out	5/11°C	11/17°C
	Heating capacity	289.8 kW	276.2 kW
-	COP	4.12	2.85
1	Hot water in/out	35/45°C	60/70°C
	Refrigerant	R-1234ze	R-1234ze
	Piston compressors	4	4
1	No. of cooling cycles	2	2

Sources: www.maestrani-schokolade.ch, www.cta.ch

GVS Schaffhausen, Landi – Beverages

Heat sink: 80 to 95 °C

- process water for disinfection of beverage filling plants and wine tanks
- space heating of storage rooms
- district heating of production site
 Heat source: 37 °C
- waste heat from refrigeration (cooling of storage rooms)

University of Applied Sciences Switzerland

Heat pump type:ISWHHeating capacity:63 kVCooling capacity:48 kVCompressor:ScrewCOP Heating:4,2EER Cooling:3,2Year of installation:2017

ISWHS 60 ER3 63 kW 48 kW Screw, ÖKO 1 (R245fa) 4,2 3,2 2017

Source: Ochsner, Ennovatis Schweiz AG

University of Applied Sciences of Fastern Switzerland

Nutrex – Vinegar fermentation and pasteurization

Applications:

6

- <u>Cooling: Vinegar fermentation process</u> over 10 days at 30°C
- <u>Heating:</u> Vinegar pasteurization >70°C to obtain a non-perishable food
- Cooling capacity: 136 kW
- Heating capacity: 194 kW, COP 3,4
- Savings CO₂ emissions: ~310 t/a
- Savings fuel: up to 65'000 L/a

Left: Production of the vinegar/fermentation Right: Heat pump in machine room Source: Viessmann/Nutrex

By VIESMANN climate of innovation



Source: EHPA (2017): Large scale heat pumps in Europe

Slaughterhouse Zurich – Meat Production

University of Applied Sciences of Eastern Switzerland

Process applied	Hot water for cleaning processes up to 90°C and space heating
Location	Zurich (in the middle of the city, historical building)
Year of installation	2011
HP manufacturer	Thermea, Germany
Contractor	ewz Energiedienstleistungen
Consultant	City of Zurich
Refrigerant	CO ₂ (R744)
Compressor	Screw
Heating/cooling capacity (kW)	800/564
Heat source	Waste heat from refrigeration processes (closed water loop with storage tank) and waste heat from compressed air generation
Heat source (°C) in/out	20/14
Heat sink (°C) in/out	Water, 30/90
Efficiency (COP)	3.4
Savings CO ₂ emissions	30% (510 t/a), saving of 2'590 MWh fossil fuels

Potential applications

HOT WATER

HOT AIR

STEAM

- Hot water generation for washing and cleaning processes (food, meat, product washing) in combination with cooling generation
- Hot air generation and air preheating for drying processes (wood, paper, sewage sludge, starch, bricks, pet food) by waste heat recovery
- Process steam generation (low pressure steam) for the sterilization and pasteurization of food (e.g. milk) using cooling water or humid exhaust air
- Heat recovery by flue gas condensation in biomass incinerators
- Local and district heating networks (e.g. of municipal utilities and municipalities)

Conclusions

of Eastern Switzerland

- 115 to 145 units of industrial heat pumps (>100 kW) sold per year
- **Refrigerants used: R245fa,** R134a, R1234ze, R744 (CO₂)
- The next generation of refrigerants with very low GWP needs to be introduced
- Laboratory HTHP at NTB allows testing new HFO & HCFO refrigerants
- Application examples in the Swiss food industry:
 - chocolate (hot water, space heating, cooling)
 - cheese (process heat)
 - **vinegar** (fermentation, pasteurization)
 - meat (cleaning processes)
- Max. identified heat sink temperature: 92 °C (cheese factory)
- Potential applications: hot water, hot air, steam
- Savings: 30 to 40% reduction of CO₂ emissions & large amounts of fossil fuels

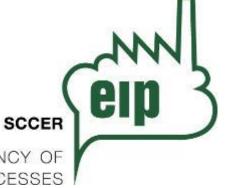
Acknowledgements

This research project is part of the

Swiss Competence Center for Energy Research SCCER EIP

of the Swiss Innovation Agency Innosuisse.

We would like to thank **Innosuisse** for their support.



Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Innosuisse – Swiss Innovation Agency

Bundesamt für Energie (BFE) Vertragsnummer: SI/501782-01 Project: HTWP-Annex 48 – Beitrag über HTWP zum IEA TCP HPT Annex 48

EFFICIENCY OF INDUSTRIAL PROCESSES

Thank you for your attention

Dr. Cordin Arpagaus

NTB University of Applied Sciences of Technology Buchs Institute for Energy Systems IES

cordin.arpagaus@ntb.ch Tel. +41 81 377 94 34 www.ntb.ch/en/team/cordin-arpagaus

NTE NTE

Interstate University of Applied Sciences of Technology Buchs

University of Applied Sciences of Eastern Switzerland

ICR 2019, The 25th IIR International Congress of Refrigeration Montréal, Québec, Canada August 24-30, 2019

INSTITUTE FOR ENERGY SYSTEMS