INO

FAIRE LA LUMIÈRE SHEDDING LIGHT

GREEN SENSORS BY PRINTED PHOTONICS

Charles Trudeau

09-02-2022

© 2018. INO. Confidentiel. Tous droits réservés. Aucune partie de ce document ne peut être reproduite, conservée dans un système d'information ou diffusée dans toute forme ou par tout moyen que ce soit, incluant enregistrement, photocopie, télécopieur, etc. sans une approbation préalable et écrite de l'INO. / © 2018. INO. Confidential. All rights reserved. No part of this document may be reproduced, stored in a retrieval system or transmitted in any form or by any means whatsoever, including recording, photocopying, faxing, etc., whithout INO's prior written approval.

Presentation Outline

- INO Who are we?
- Printed Photonics at INO
- NSERC Green Electronics Network
- Green sensors
 - What do we mean by "Green" ?
 - How to make Greener Sensors
- Examples of green sensors at INO

About Us

- INO is a private institute of translational applied research (NPO)
- Founded in 1988
- 200 employees
- Annual budget ~\$35 M
- ISO 9001 and 13485
- Offices in Québec, Montréal, and Hamilton

OUR MISSION

Bring to life innovations that enable Canadian industry to be more productive and competitive.

Our role

Industrial world

Academic world

Our business units

Defense, Security and Aerospace

Advanced Manufacturing

Sustainable Resources, Agriculture and Infrastructures

Biomedtech

Printed Photonics at INO

OFil

- The team and the lab
- Capabilities
- Electrodes and Printed Circuits
- Sensors and Devices
- Other Applications

Our Team and Laboratory

- Inkjet Printing
- Aerosol Jet Printing
- Spray Coating
- Lamination
- Hybrid Assembly

Technical Team

Capabilities – Materials

Dielectriques **Substrats Passivation** Metals, Semiconducteurs Semimetals and Photo paper InkOrmo **SU-8** Conductors Aerogels Paper InkOrmo SU-8 PDMS Celvaseal **ITO PET/BSG** Photoresist SiO_x coatings **PEDOT:PSS** Silver Polyimide (PI) Xerox Various epoxies **Green PEDOT** Gold Polyethylene dielectric Teflon based Perovskites PEDOT-CNT Polyvinyl (PET) formulations SWCNT/MWCNT Graphene alcohol (PVA) Polycarbonate Spiro-OMeTAD (PC) QD-Pbs LDPE

© 2018

11

Electrodes and printed circuits

- Bio-electrodes
- Transparent electrodes
- Organic Electrodes
- Heating Elements
- Multilayered Circuits

AFM

PATCH

12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 -0.80 Reverse Scar Temperature [°C] -1.00 Bolometer (ohm) -0.2 0.2 0.8 ··· D··· Bolometer (TCR) ··· D··· Thermistor (TCR) Voltage [V] **Primitive Bolometers** https://doi.org/10.1038/s41528-020-00097-2 151 Long a 12,000 80 nperature (°C) g 11,000 60 10,000 40 9,000 20 8,000 0 ě 7,000 6,000 -20 ⁶ 500 1000 Vortex Phase Plates temps (minutes) — Printed Sensor (Ω) Temperature control (°C) https://doi.org/10.3390/s19030444 **Temperature and Humidity Sensors**

Sensors and Devices

1.E+10

1.E+08

1.E+06

1.E+04

1.E+02

100%

90%

80%

70% 60%

50%

40%

30%

20%

10%

٥%

— Thermistor (ohm)

TCR [%]

Other Applications

Aerogel Thermal Insulator Printing

Temporal Modulated Laser Sintering https://doi.org/10.1038/s41598-018-19801-4

NSERC Green Electronics Network

Theme 1

Green Materials and Processes for Printed Electronic Devices

Theme 2

Printing Processes and Device Fabrication

NSERC Green Electronics Network

- What do we mean by "Green" ?
- How to make Greener Sensors

What do we mean by "Green"?

Reduce Waste Materials & Energy

Improve Safety

People & Environment

What do we mean by "Green"?

12 PRINCIPLES OF

GREEN CHEMISTRY

8

MANUFACTURING

1 Waste Prevention

- 2 Chemical Economy
 - B Less Hazardous Chemical Syntheses
 - Safer Chemicals Products
 - **5** Safer Solvents & Auxiliaries
 - 6 Energy Efficient
 - Renewable Feedstocks
 - 8 Streamlined Processes
 - **9** Efficient Processes
 - Innocuous Degradation
 - Eco-Friendly (Pollution Prevention)
 - Safe (Accident Prevention)

Based on the work of Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice, Oxford University Press: New York, 1998, p.30.

How To Make Greener Sensors

Examples of Green Sensors at INO

- Myths of green sensors
- Carbon on paper temperature sensor
- Green PEDOT-Like polymer for humidity and/or temperature sensing

Green sensors are more costly

False – principles of green manufacturing are based on improved efficiency, lowered waste and abundant and renewable feedstocks.

Green sensors have lowered performances

Questionable – Green sensors enable novel market applications

Carbon on Paper Temperature sensor

Green PEDOT-Like polymer for humidity and/or temperature sensing

Self doped Green PEDOT-Like

polymer

PEDOT:PSS

100

