
ARCHITECTURAL REFACTORING
FOR CLOUD

Prof. Dr. Olaf Zimmermann
Distinguished (Chief/Lead) IT Architect, The Open Group
Institute für Software, HSR FHO
Ladenburg, 8. Juli 2014

Jahrestagung Architekturen 2014

GI-Fachgruppe Architekturen

Agenda

 Kontext & Motivation
 OSSM Definition for Cloud Computing, Sample Architecture

 Cloud Computing Patterns
 Cloud Offerings, Cloud Application Architecture, Cloud Management

 IDEAL Cloud Application Architectures

 Decision-Centric Architectural Refactoring (Vision)

 Cloud Refactorings – Examples and Catalog Structure

 Tool Support (Preview)

© Olaf Zimmermann, 2014.
Page 2

Gedankenexperiment: Ist dieses verteilte Informationssystem cloudfähig?

 Core Banking Anwendung, Shared Service/Service Provider Modell
 Layers Pattern, Datenhaltung im Backend, Web Frontend, Web Services

Referenz: ACM
OOPSLA 2004 &

Informatik-Spektrum
Heft 2/2004

© Olaf Zimmermann, 2013.
Page 3

Simple, User-Centered Definition of Cloud Computing

Cloud computing provides a set of computing resources with the
following testable characteristics:

1. On-demand: the server is already setup and ready to be deployed
(so the user can sign-up for the service without waiting)

2. Self-service: customer chooses what they want, when they want it
(the user can use the service anytime, without waiting)

3. Scalable: customer can choose how much they want and ramp up if
necessary (the user can scale-up the service when needed, without
waiting for the provider to add more capacity)

4. Measurable: there’s metering/reporting so you know you are getting
what you pay for (the user can access measurable data to determine the
status of the service)

In summary, cloud computing is OSSM (pronounced ‘awesome’).
Reference: B. Kepes, CloudU (online training, sponsored by RackSpace),

Dave Nielsen, Cloud Camps, http://www.daveslist.com

© Olaf Zimmermann, 2014.
Page 4

http://www.daveslist.com/

Cloud Computing Patterns (CCP)

© Olaf Zimmermann, 2014.
Page 5

Reference: Cloud Computing Patterns, Springer 2014, http://cloudcomputingpatterns.org/

http://cloudcomputingpatterns.org/

Cloud Computing Patterns (CCP) Map – Cloud Offerings

© Olaf Zimmermann, 2014.
Page 6

Cloud Application Components (Source: CCP)

 http://www.cloudcomputingpatterns.org/Cat
egory:Cloud_Application_Components

© Olaf Zimmermann, 2014.
Page 7

http://www.cloudcomputingpatterns.org/Category:Cloud_Application_Components
http://www.cloudcomputingpatterns.org/Category:Cloud_Application_Components

Watchdog Pattern

• Application components are stateless
• Component health is monitored

• Periodic heartbeats: components notify that they are functioning
• Test requests: result of test data is compared to expected results
• Environment: provider-supplied reachability monitoring

© Olaf Zimmermann, 2013.
Page 8

IDEAL Cloud Application Properties (Fehling et al.)

Distribution: applications are decomposed to…
… use multiple cloud resources
… support the fact that clouds are large globally distributed systems

Elasticity: applications can be scaled out dynamically
Scale out: performance increase through addition of resources
Scale up: performance increase by increasing resource capabilities

? Loose Coupling: influence of application components is limited
Example: failures should not impact other components
Example: addition / removal of components is simplified

Isolated State: most of the application is stateless with respect to:
Session State: state of the communication with the application
Application State: data handled by the application

Automated Management: runtime tasks have to be handled quickly
Example: exploitation of pay-per-use by changing resource numbers
Example: resiliency by reacting to resource failures

© Olaf Zimmermann, 2014.
Page 9

Reference: Cloud Computing Patterns, Springer 2014, http://cloudcomputingpatterns.org/

http://cloudcomputingpatterns.org/

Session State Management Design – Options

 Client Session State
 Scales well, but has security and possibly performance problems
 This does not change when moving to a cloud platform.

 Server Session State
 Uses main memory or proprietary data stores in an application server (e.g.

HTTP session in JEE servlet container)
 Persistent HTTP sessions no longer recommended when deploying to a

cloud due to scalability and reliability concerns.

 Database Session State
 Is well supported in many clouds, e.g. via highly scalable key-value storage

(a type of NoSQL database)

© Olaf Zimmermann, 2014.
Page 10

From Traditional Layer-Tier Architectures to Cloud Services

Logic

Data

On which tier
should
existing
 and new

applications be
integrated?

Traditional

Applications

SOA

Services

Basket of Services Discrete Applications
(Two or Three Tiers)

Users

UI

© Olaf Zimmermann, 2014.
Page 11

Decision-Centric
Architectural Refactoring

for Cloud (ARC)

What are Architectural Decisions (ADs)? Why Care?

 “The design decisions that are costly to change” (Grady Booch, 2009)

 A more elaborate definition:

“Architectural decisions capture key design issues and the rationale behind chosen
solutions. They are conscious design decisions concerning a software-intensive

system as a whole or one or more of its core components and connectors in any given
view. The outcome of architectural decisions influences the system’s nonfunctional

characteristics including its software quality attributes.”

 From IBM UMF work product description ART 0513 (since 1998):
“The purpose of the Architectural Decisions work product is to:
 Provide a single place to find important architectural decisions
 Make explicit the rationale and justification of architectural decisions
 Preserve design integrity in the provision of functionality and its allocation to

system components
 Ensure that the architecture is extensible and can support an evolving system
 Provide a reference of documented decisions for new people who join the project
 Avoid unnecessary reconsideration of the same issues”

© Olaf Zimmermann, 2014.
Page 12

Reference: SEI SATURN 2010
(IBM presentation)

Y-Template for Architectural Decision Capturing

 Link to (non-)functional requirements and design context

 Tradeoffs between quality attributes

In the context of <use case uc
and/or component co>, … facing <non-functional concern c>,

… we decided for <option o1>

… to achieve <quality q>,

and neglected <options o2 to oN>,

… accepting downside <consequence c>.

© Olaf Zimmermann, 2014.
Page 13

Reference: Sustainable Architectural Design Decisions, IEEE Software 30(6): 46-53 (2013)

SOA Decision Modeling (2006-2011): Generic Metamodel

 Existing metamodels and templates refactored and extended for reuse
 Before: documentation – after the fact (past tense)
 With SOAD: design guidance – forward looking (future tense)

References: Architectural Decisions as Reusable Design Assets. IEEE Software 28(1): 64-69 (2011)
Reusable Architectural Decision Models for Enterprise Application Development. Proc. of QOSA 2007

 Page 14
© Olaf Zimmermann, 2014.

“We decided for the
MVC alternative to

resolve the web
page flow issue

because we gained
positive experience

with it on many
similar projects.”

“When
designing a
presentation
layer, you will

have to select a
pattern to

control the Web
page flow.”

“Model View
Controller
(MVC) is a
common

architectural
pattern to

control the Web
page flow.”

ARC Metamodel (at an Initial State of Elaboration) (1/2)

 Refactoring need arises from decision mismatches
 Decision actually made vs. recommended decision (IDEAL)
 Same problem (to be) solved differently (choosing different option)
 Refactoring improves at least one quality attribute and preserves functionality

© Olaf Zimmermann, 2014.
Page 15

class ArcCore Upper Half

DecisionRequired

- problemStatement :String
- optionSelectionCriteria :String

DecisionMade

- justification :Rationale
- dateAndTime

OptionConsidered

OptionChosen Option

- id :int
- name :String
- description :String

Decision

- id :int
- name :String
- owner :String
- status :int

OptionNeglected

leadingTo

incompatibleWith

ARC Metamodel (at an Initial State of Elaboration) (2/2)

Page 16
© Olaf Zimmermann, 2014.

class ArcCoreLowerHalf

DecisionMetadata

DecisionMismatch

- detectedBy :String
- severityLevel :int

TechnicalDebtItem

Rev iewFinding

EnforcementProblem

ArchitecturalRefactoring

- name :String
- type :String
- solutionSketch :String
- executionTasks :TaskList

DecisionTag

- name :String

ModernizationNeed

ArchitecturalPrincipleViolation

CodeDesignGap

QualityStory

- storyName :String
- role :String
- qualityGoal :String
- effects :StringList
- investment :StringList

1..*

resolves

Architectural Refactoring for Cloud – Example: De-SQL

© Olaf Zimmermann, 2014.
Page 17

Architectural Refactoring: De-SQL
Context (viewpoint, refinement level):
• Logical viewpoint, data viewpoint (all levels)

Quality attributes and stories (forces):
• Flexibility, data integrity

Smell (refactoring driver):
• It takes rather long to update the data model and to migrate existing data

Architectural decision(s) to be revisited:
• Choice of data modeling paradigm (current decision is: relational)
• Choice of metamodel and query language (current decision is: SQL)

Refactoring (solution sketch/evolution outline):
• Use document-oriented database such as MongoDB instead of RDBMS such as MySQL
• Redesign transaction management and database administration

Affected components and connectors (if modelled explicitly):
• Database
• Data access layer

Execution tasks (in agile planning tool and/or full-fledged design method):
• Design document layout (i.e., the pendant to the machine-readable SQL DDL)
• Write new data access layer, implement SQLish query capabilities yourself
• Decide on transaction boundaries (if any), document database administration (CRUD, backup)

Candidate Architectural Refactorings for Cloud (Draft Catalog)

Category Refactorings

IaaS Virtualize Server Virtualize Storage Virtualize Network

IaaS, PaaS Swap Cloud Provider Change Operating System Open Port

PaaS “De-SQL” “BASEify” (remove ”ACID”) Replace DBMS

PaaS Change Messaging QoS Upgrade Queue Endpoint(s) Swap Messaging Provider

SaaS/application Increase Concurrency Add Cache Precompute Results

SaaS/application (CCP book, CBDI-SAE) (all Stal refactorings) (PoEAA/Fowler patterns)

Scalability Change Strategy (Scale
Up vs. Scale Out)

Replace Own Cache with
Provider Capability Add Cloud Resource

(xaaS)
Performance Add Lazy Loading Move State to Database

Communication Change Message
Exchange Pattern

Replace Transport Protocol Change Protocol Provider

User management Swap IAM Provider Replicate Credential Store Federate Identities

Service/deployment
model changes

Move Workload to Cloud
(use XaaS)

Privatize Deployment,
Publicize Deployment

Merge Deployments (Use
Hybrid Cloud)

© Olaf Zimmermann, 2014.
Page 18

http://cloudcomputingpatterns.org/
http://everware-cbdi.com/index.php?cID=pattern-index&tab=520
http://www.sigs.de/download/oop_08/Stal%20Mi3-4.pdf
http://martinfowler.com/eaaCatalog/index.html

 Collaborative Decision Management and Architectural Refactoring
(CDAR) Tool
 RESTful integration of Browser user interface/workflow engine with

MediaWiki (the wiki engine behind Wikipedia) via semantic links

 Add In for Sparx Enterprise Architect under construction
 Joint work with ABB Corporate Research

Ausblick: Decision Collaboration & Refactoring Knowledge Tool

© Olaf Zimmermann, 2014.
Page 19

Summary and Discussion

 Cloud computing is OSSM, pattern exist – but many open research and
development questions remain (some of which resemble those in I4.0)
 E.g. cloud application lifecycle, cloud service management, cloud

interoperability, cloud security,

 Architectural decision making and architectural refactoring a key
responsibilities of IT architects which are often underestimated and
underrepresented in existing methods and tools.
 New task-centric templates and knowledge-centric tools required

 In cloud design and other domains (including automation), many
architectural decisions recur. This makes it possible to share
architectural decision and refactoring knowledge including best
practices (design acceleration and quality assurance).
 Cloud decision and refactoring catalog under construction

 Tool support for decision modeling with reuse and for architectural
refactoring is emerging
 Decision management, planning of decision execution (project planning)

© Olaf Zimmermann, 2014.
Page 20

More Information – Cloud Computing

 Cloud research project and deployment lab at HSR
 Via http://www.ifs.hsr.ch/Olaf-

Zimmermann.11623.0.html?&L=4 and ozimmerm@hsr.ch

 Cloud Computing Patterns (Springer 2014)
 http://cloudcomputingpatterns.org

 Online-Schulung
 E.g. Rackspace Cloud University (CloudU),

http://www.rackspace.com/knowledge_center/cloudu/

 Analysten-Reports und Knowledge Hubs
 z.B. InfoWorld, DZone

 Blogs

© Olaf Zimmermann, 2014.
Page 21

 http://searchcloudcomputing.techtarget
.com/feature/Top-five-must-read-cloud-
computing-blogs

http://www.ifs.hsr.ch/Olaf-Zimmermann.11623.0.html?&L=4
http://www.ifs.hsr.ch/Olaf-Zimmermann.11623.0.html?&L=4
mailto:ozimmerm@hsr.ch
http://cloudcomputingpatterns.org/
http://www.rackspace.com/knowledge_center/cloudu/
http://www.infoworld.com/d/cloud-computing
http://www.dzone.com/mz/cloud
http://searchcloudcomputing.techtarget.com/feature/Top-five-must-read-cloud-computing-blogs
http://searchcloudcomputing.techtarget.com/feature/Top-five-must-read-cloud-computing-blogs
http://searchcloudcomputing.techtarget.com/feature/Top-five-must-read-cloud-computing-blogs

More Information – Architectural Decisions & Refactoring

 Architectural Decision (AD) Capturing and Reuse:
 J. Tyree/A. Akerman, Architecture Decisions: Demystifying Architecture.

IEEE Software, 22/2, March/April 2005

 Architectural Refactoring
 M. Stal, Refactoring Software Architecture, Chapter 3 in Agile Software

Architecture, Elsevier 2013 (also see his blog posts and OOP tutorial)

 Cloud Reengineering Knowledge
 IAAS (University of Stuttgart), http://www.cloud-data-migration.com/
 T. Höllwarth, Cloud Migration, http://www.cloud-migration.eu/
 CBDI-SAE, Cloud Migration Patterns, http://everware-

cbdi.com/index.php?cID=pattern-index&tab=520
 Migration patterns
 Cloud migration research

© Olaf Zimmermann, 2014.
Page 22

https://www.elsevier.com/books/agile-software-architecture/mistrik/978-0-12-407772-0
https://www.elsevier.com/books/agile-software-architecture/mistrik/978-0-12-407772-0
http://www.cloud-data-migration.com/
http://www.cloud-migration.eu/
http://everware-cbdi.com/index.php?cID=pattern-index&tab=520
http://everware-cbdi.com/index.php?cID=pattern-index&tab=520

	Architectural Refactoring �for Cloud��
	Agenda
	Gedankenexperiment: Ist dieses verteilte Informationssystem cloudfähig?
	Simple, User-Centered Definition of Cloud Computing
	Cloud Computing Patterns (CCP)
	Cloud Computing Patterns (CCP) Map – Cloud Offerings
	Cloud Application Components (Source: CCP)
	Watchdog Pattern
	IDEAL Cloud Application Properties (Fehling et al.)
	Session State Management Design – Options
	From Traditional Layer-Tier Architectures to Cloud Services
	What are Architectural Decisions (ADs)? Why Care?
	Y-Template for Architectural Decision Capturing
	SOA Decision Modeling (2006-2011): Generic Metamodel
	ARC Metamodel (at an Initial State of Elaboration) (1/2)
	ARC Metamodel (at an Initial State of Elaboration) (2/2)
	Architectural Refactoring for Cloud – Example: De-SQL
	Candidate Architectural Refactorings for Cloud (Draft Catalog)
	Ausblick: Decision Collaboration & Refactoring Knowledge Tool
	Summary and Discussion
	More Information – Cloud Computing
	More Information – Architectural Decisions & Refactoring

