
Architectural Decision Guidance across Projects
Problem Space Modeling, Decision Backlog Management and Cloud Computing Knowledge

Olaf Zimmermann, Lukas Wegmann
Institute for Software

Hochschule für Technik (HSR FHO)
Rapperswil, Switzerland

{firstname.lastname}@hsr.ch

Heiko Koziolek, Thomas Goldschmidt
Research Area Software

ABB Corporate Research
Ladenburg, Germany

{firstname.lastname}@de.abb.com

Abstract— Architectural Knowledge Management (AKM) has
been a major topic in software architecture research since 2004.
Open AKM problems include an effective, seamless transition
from reusable knowledge found in patterns books and technology
blogs to project-specific decision guidance and an efficient,
practical approach to knowledge application and maintenance.
We extended our previous work with concepts for problem space
modeling, focusing on reusable knowledge, as well as solution
space management, focusing on project-level decisions. We
implemented these concepts in ADMentor, an extension of Sparx
Enterprise Architect. ADMentor features rapid problem space
modeling, UML model linkage, question-option-criteria diagram
support, meta-information for model tailoring, as well as decision
backlog management. We validated ADMentor by modeling and
applying 85 cloud application design decisions and 75 workflow
management decisions, creating one problem and three sample
solution spaces covering control system architectures, and
obtaining user feedback on tool and model content.

Keywords—agile practices; architectural synthesis;
architectural decisions; cloud computing; knowledge management;
patterns; UML;

I. INTRODUCTION
 Lindvall and Rus stated that “the major problem with
intellectual capital is that it has legs and walks home every
day” [10]. In response to this threat, codification and
personalization strategies can be applied. The Architectural
Knowledge Management (AKM) community has proposed
support for these strategies in metamodels, methods, and tools
since 2004 [1]. Most AKM work focusses on capturing
architectural decisions after the fact; e.g., the ISO/IEC/IEEE
standard 42010:2011 recommends the capturing of decision ra-
tionale in architecture descriptions [8]. Such rationale answers
why-questions concerning architectural synthesis. However,
little attention has been paid to making the gathered knowledge
applicable to multiple projects across organizations and to give
decisions a guiding, lasting role in design processes.

 According to our personal experiences gained on industrial
research projects as well as many years in product development
and professional services, the potential value of knowledge
sharing is acknowledged by many architects (both junior and
senior) – but still hard to realize in practice. Three reasons for
these difficulties include a) the diversity in technology, b) the
long lifetime of decisions throughout software evolution, and
c) the differences in architecture design practices from agile to
“big design upfront”; this is particularly relevant in global

firms with many geographically distributed, federated and
loosely coupled development organizations. Project constraints
such as frequent due dates, budget limitations and stakeholder
pressure cause a lot of precious knowledge to remain tacit (i.e.,
in people’s heads) [20]. In our previous work, we have
presented solutions to make architectural decisions sustainable
[24] in response to issue b) and to organize the knowledge into
abstraction-refinement levels [27] in response to issue a).
However, issue c) remains open; let us investigate it further.

 Most decision documentation tools suffer from the lack of
incentives for mere decision capturing and other real-world
inhibitors. Capturing decision knowledge in text documents
after-the-fact is a promising start, but bound to fail in the long
run as document-oriented decision logs are hard to process and
maintain once they reach a certain size (say, 50 to 70 decisions
captured). With such approach, sequential reading or full text
searches are the main processing options. Decision docu-
mentation models promise to improve the situation, but have to
be created, organized, and maintained over time as well.

Both textual decision logs and documentation models are
unable to steer the initial design and review work on a project.
For instance, development processes using a milestone-based
approach such as Stage Gate® [19] may ask for a number of
decisions to be made and documented before a milestone or
gate can be passed (e.g., make-or-buy decisions and platform
decisions that require product purchases). The existing decision
capturing methods and tools do not make the need for such
mandatory decisions explicit in the design process; they only
allow decision makers to record (log) their decisions once they
have identified and made them. As a consequence, the
preparation for gate reviews or milestone approval meetings is
time consuming and error prone, involving a lot of copy-paste
and other manual content assembly work. To give an example:
in cloud computing, architectural knowledge e.g. around
workload exists in various forms from blog posts to white
papers and patterns books [3]; this is precious, but passive
knowledge. Related decisions are not made explicit; if the
literature is not consulted, required decisions might be missed.

Decision guidance modeling practices and tools are still
immature and confronted with a healthy amount of skepticism
within the target audience, e.g., concerns about the organizatio-
nal feasibility of cross-product, cross-unit reuse of knowledge
as well as resulting maintenance efforts.

To overcome these problems, we separate decisions
required from decisions made. The resulting research questions
(RQs) to be investigated in this paper are:

RQ 1: How to model decisions required so that a) they are
applicable to diverse projects, b) do not age fast e.g. due to
technology evolution, and c) are simple to maintain over time?

To answer RQ1, we supersede previous metamodels for
decision capturing and sharing with lean knowledge quadruples
that give decisions a guiding role that works effectively and
efficiently both in traditional and in agile settings.

RQ 2: How to integrate decision modeling concepts into
architecture design practices and tools commonly used by
architects to evolve their designs and record decisions made
along the way, without creating more effort than gains?

To respond to RQ 2, we annotate the decision knowledge
with meta-information, leveraging already existing organizing
principles such as viewpoints, refinement levels, and project
stages. Decision capturing is streamlined by leveraging lean
documentation templates (from practitioner literature) flexibly.

We make our solutions (answers) to RQ 1 and RQ 2
available in a new add-in to the modeling tool platform Sparx
Enterprise Architect, and demonstrate their value by creating
decision knowledge for cloud computing and other domains.

The remainder of this paper is structured in the following
way: Section II discusses the state of the art and the practice
with respect to our research questions and derives requirements
from it. Our novel research contributions towards completing
the vision for an active, guiding role of architectural decisions
to accelerate design work are introduced in Section III. Section
IV presents an implementation of these concepts, Section V our
further validation activities that include action research and
experiments with architects from industry and their knowledge.
Section VI then discusses the validation results and practicality
of our approach. Section VII concludes and highlights future
work and other opportunities.

II. STATE OF THE ART AND PRACTICE
(AND DERIVATION OF AKM TOOL REQUIREMENTS)

 Since an inaugural workshop held in Groningen, NL in
2004, the software architecture community has advanced the
state of the art in AKM significantly [1]. Some success with
decision guidance modeling has been reported e.g. for
enterprise applications and service-oriented architectures [27];
however, it is not a widely adopted practice yet.

 To avoid unnecessary overlap with previous publications
from the community, we structure this section into a
comparison of seven templates that have been reported to be
actively used in practice (Section II.A), briefly revisit research
prototype tools from other researchers (II.B), and then
summarize our previous work on the subject (II.C, II.D).
Finally, we derive requirements for design and implementation
of ADMentor from the state of the art and the practice.

A. ISO/IEC/IEEE 42010 and Practitioner Templates
 Table 1 compares the guidelines in IEEE 42010 (and its

companion template available under a Creative Commons
License) with six other Architectural Decision (AD) capturing

templates used in industry, ordered by their age: IBM UMF
[25], the Tyree/Akerman template [22], a key decisions
template from Bredemeyer Consulting [6], M. Nygard’s ADR
blog post [14], an arc42 resource by Hruschka/Starke [7], and
our own Y-statements [24]. We selected these seven templates
due to their public accessibility and their know uses on industry
projects. The selection is not complete, but representative.1

The comparison in the table shows that there are many
formats, with consensus about the core attributes/aspects (e.g.,
AD outcome and why-justification), but significant variability
regarding traceability links and other types of attributes/aspects
(e.g., status and owner of decision). The number of template
attributes/aspects varies; hence, the effort to fill out varies too.
IBM UMF and Tyree/Akerman are the most comprehensive
templates; Nygard’s ADRs, arc42 and Y-statements appear at
the other end of the spectrum. Note that not all of the
attributes/aspects are needed when predicting future decisions
in decision guidance models (e.g., outcome, status); a
generalized, forward-looking subset is enough (e.g., decision
drivers, options to be considered). We can conclude that tools
for decision capturing and sharing should be flexible and
configurable to accommodate use of these (or other) templates.

B. Research Tools (Brief Recapitulation)
AREL [21] is an add-in to Sparx Enterprise Architect, like

Decision Architect (see Section II.C below) and ADMentor
(described in this paper). Like most AKM tools, AREL focuses
on decision rationale capturing. AREL defines a UML profile,
but does not mandate the decision capturing attributes. Hence,
our work can be seen as a continuation and extension of the
research around AREL.

 We refer the reader to Chapter 6 in [1] and two recent
conference publications, a requirements-based tool evaluation
[2] and a systematic literature review [24] for information
about other AKM/AD tools; recent additions to the portfolio
include ADvISE and SAW. Most of the existing tools focus on
decision capturing, not on decision guidance; such tools do not
answer our two research questions from Section I satisfyingly.

C. Decision Architect (Documentation Viewpoints)
The work reported in this paper is connected to the

formerly published Decision Architect [11], an add-in for
Sparx Enterprise Architect implementing a conceptual
framework for architecture decision documentation based on
ISO/IEC/IEEE 42010. The framework consists of five decision
viewpoints: relationship, chronology, stakeholder, forces and
detailed viewpoint. With the implementation as an add-in to an
UML editor, it is possible to link architectural decisions to
UML model elements thereby realizing traceability. In [11], we
reported the application of Decision Architect by five software
architects with good feedback.

For the latest version 0.5, released as open source in
September 2014, the Decision Architect features re-designed
forces and detailed viewpoints and numerous bug fixes. In
contrast to ADMentor as introduced in this paper, Decision
Architect is meant mainly for documentation purposes, but not

1 Note that we did not include any scientific approaches here; see e.g. the rela-
ted work coverage in [2], [11] and [23] for analyses and comparisons.

TABLE I. COMPARISON OF PRACTITIONER TEMPLATES FOR ARCHITECTURAL DECISION (AD) CAPTURING

AD aspect
(attribute)

IEEE 42010
(Template V2.2)

IBM UMF
AD Table

Tyree/
Akerman

Bredemeyer
Key Decisions

Nygard
ADRs

arc42
Hruschka/Starke

Y-Statements
(ABB, [24])

ID Unique Identifier ID (in D-Header) / (part of name) (Section #) (Id)
Outcome Statement of the

decision
Decision (Made) Decision Approach Decision Decision we decided for

Requirements
trace

(FRs, NFRs)

Correspondence
or linkage to

concerns

(Derived
requirements)

Related
requirements

Business
drivers,

technical
drivers

/ / /

Accountability
(Role, Person)

Owner of the
decision

/ / / / / /

Software
architecture

viewpoint trace

Correspondence
or linkage to

elements

/ Related
artifacts

/ / / In the context
of

Why-answers Rationale (linked
entity)

Justification Argument Conclusion / (Question under
Decision)

(optional
“because” half

sentence)
Decision drivers Forces,

constraints
/ (Constraints) Benefits,

Drawbacks
Context Constraints facing

Assumptions Assumptions Assumptions Assumptions / / Assumptions /
Options Considered

Alternatives
Alternatives Positions / / Considered

Alternatives
and neglected

Problem / Issue or Problem Issue / / Problem /
Decision

dependencies
(not in template,
but in standard)

Related decisions Related
decisions

/ / / /

Categorization,
classification

/ Subject Area,
Topic

Group(ing) / / (Decision Topic) /

Name / Name (in D-Header) <<key
decision>>

Title (Section heading) /

State of AD
making

not in template,
but in standard

(not in published
example)

Status / Status / /

Impact not in template,
but in standard

Implications Implications Issues/
Considerations

Consequences / to achieve,
accepting that

Other entries Timestamps,
Citations

Motivation Notes, Related
principles

Notes, Drivers
realized

/ / /

Element count 9 (template),
11 (standard)

13 14 9 (plus 1-2 in
header)

5 5 (with 14
questions)

6

Scoping help
(which ADs to

capture?)

Yes (not in table
template, not

published)

(anecdotal In
article)

2001 white
paper

/ (ASRs
mentioned)

/

Size (page or word
limit) or other

hints

/ not published (example is
half a page,
table form)

/ 1-2 pages per
ADR

to be ordered by
importance

1 (long)
sentence per
Y-statement

Publication year 2011 1998 (internal) 2005 2005 2011 2012 2012

for architectural guidance: there is no separation between
problem and solution spaces, and it is not possible to import
generic problem domain models. However, Decision Architect
and ADMentor can be connected within Enterprise Architect to
allow both detailed documentation and architectural guidance.

D. SOAD and SDA (2006-2011)
The SOA Decision (SOAD) Modeling project2 [28] and

Solution Decision Advisor (SDA) tool [13] addressed similar
research problems as we do here, but chose different solutions
both on the conceptual and on the technical level: for instance,
options were modelled as child elements of problems, whereas
ADMentor sees options as first class model elements; multiple
options occurrences can be chosen per problem occurrence.
Furthermore, the metamodel of ADMentor is not hardcoded or
fixed otherwise, but extensible via typed meta-information
attributes/annotations (see Section III). Moreover, ADMentor

2 The usage of SOAD concepts and method is not limited to SOA design.
However, ADkwik, the tool for SOAD, is no longer available publicly.

defines a UML Profile (see Section IV) and leverages Sparx
Enterprise Architect as a UML and general modeling platform.

Derivation of requirements. Let us now establish additional
requirements for ADMentor.

Functional Requirements (FRs). Tools for decision capturing
and sharing must support:

• A user interface applying the master-details pattern so
that both the big picture and the nuts and bolts of
individual problems and options can be portrayed.

• Rich text editing (e.g., URIs, bullet lists, emphasis on
certain words with italic and bold fonts, headings).

• Powerful model refactoring capabilities.
• Semantic queries (e.g., returning all problems to be

solved for particular milestone or gate).
• Reporting, e.g. RTF/PDF/HTML exports that can be

customized for project stakeholders that are involved
in the decision making, but do not work with the tool.

• An API for semi-automatic model creation/updating
and tool integration.

FRs for AKM tools, both for retrospective and for proactive
methods and tools, have also been published in [2] (and other
literature referenced in Section II.A to II.D).

Other success criteria. In our opinion, mere architectural
decision trees resembling Unified Modeling Language (UML)
visualizations are valuable, but not sufficient to represent the
nature of design knowledge adequately. Successful decision
capturing and sharing requires a combination of text processing
capabilities (for a powerful, but still lean knowledge authoring)
and graph-oriented visualizations (e.g., of dependencies).

A conceptual integration into both agile and more
conservative design process practices also is required. This can
be achieved with rich meta-information attribution/annotations
with appropriate default values to minimize work (also
including a confidentiality flag).

 From the related work analysis and comparison of practiced
approaches (template analysis in Section II.A), we can
conclude that even when using light templates (e.g., Nygard’s
ADRs, arc42 pages, or Y-statements), decision documentation
remains a lot of (typically unwelcome) work. AKM/AD tools
like Decision Architect help, but do not reduce the effort
sufficiently. According to our experience and community
feedback, a tool cannot dictate a single set of attributes
(knowledge structure), but must be flexible and accommodate a
variety of architectural capturing and sharing styles in a best-
of-breed manner.

Before we introduce the contribution of this paper, let us
now establish a running example indicating that many
architectural decisions recur indeed. This example will serve as
an exemplary instantiation of our concepts later in the paper.

Modelling and usage example. An example of a recurring
design issue when moving a Web application to a cloud is
session state management (e.g., think of a shopping session in
an online store). The three top-level design options (patterns)
are client session state, server session state and database
session state [4]. Client session state scales well, but has
security and possibly performance problems; this does not
change when moving to a cloud platform. Server session state
uses main memory or proprietary data stores in an application
server (e.g., an HTTP session in a JEE servlet container); this
approach is no longer recommended when deploying to a
cloud due to scalability and reliability concerns. Finally,
database session state is well supported in many clouds, e.g.
via highly scalable key-value storages (NoSQL).

If session management is a requirement, this decision has to
be made or revisited when designing a cloud-native application
or when migrating a Web-based application to the cloud; while
the decision outcomes may vary, the issues and options to be
considered stay the same (i.e., they recur). Multiple instances
of this decision may exist per project (e.g., in multi-channel
applications that serve different user groups).

III. CONCEPTUAL DESIGN OF ADMENTOR
This section presents our research contributions and is

organized into six steps: (A) metamodelling and problem space
creation, (B) problem space modeling, (C) meta-information
annotation, (D) tailoring, (E) solution space creation and (F)
solution space usage (decision backlog management).

A. Metamodeling and Problem Space Creation
Figure 1 specifies our AKM model structuring. A four-

quadrant design space structure is shown in the bottom half of
the figure (in the last two table rows and columns). The upper
part of the figure elaborates on the semantic differences
between problem spaces and solution spaces, i.e., their
different reach (i.e., scope and lifetime), owner role (i.e., model
creator and maintainer), and purpose.

Fig. 1. Problem/solution space model elements and their link types

Problems are addressed by options. Problems and options
can raise (i.e., lead to) further problems that need to be solved.
Recurring problems can be instantiated one or more times in a
solution space; option occurrences instantiate options (also one
or more times). Additional, self-explanatory link types
connecting options, not shown in Figure 1, are: suggests,
conflicts with, and bound to. In our session state management
example from above, there might be two problems, a) the
conceptual decision which pattern to use (with the three state
management patterns from above modeled as options) and b) a
technology-level decision which storage medium to use for
database session state (with options like relational MySQL
database and MongoDB key-value store, among others). The
database session state option of the conceptual pattern selection
decision raises the technology-level decision about storage.

This approach is faithful to our earlier vision of
architectural decision modeling with reuse, but also different
and more advanced: we model problem spaces and solution
spaces separately, and provide two abstractions each, problem
and solution (yielding four structural elements instead of three).
We also define novel link types connecting the four elements.
We decided to define semantically rich links that can be used in
queries etc., inspired by existing work in the AKM community
(see Section II) and by REST maturity level three [5], which
promotes hypermedia controls as/for typed link relations.

The following Figure 2 (on the next page) shows the six
processing steps dealing with the elements from the quadrants
from the bottom half of Figure 1. The processing steps are

named A to F; they are associated with the owner roles from
Figure 1, knowledge engineer and software architect (e.g.,
solution or product architect).

Fig. 2. Workflow for ADMentor users (notation: BPMN)

The remainder of the section follows the steps B to F from
Figure 2, and specifies the Create, Read, Update, Delete
(CRUD) operations that are performed on instances of the four
structural elements from Figure 1. Feedback from solution
space owners (on projects) to community-level knowledge
engineers is out of scope of this paper; see [27] for a suggestion
how to organize a continuous review-update loop.

B. Problem Space Modelling (Problems, Options)
The second modeling step after problem space creation is

problem space modeling. Problem and option model elements
are created and positioned into knowledge packages here.

Rich text support is one of the requirements we identified in
Section II – for instance, the knowledge aspects appearing in
the practitioner templates from Section II can be represented as
rich text sections separated by headings. As motivated in
Sections I and II, we do not want to dictate any particular
decision capturing template (for the description of problems,
options, and their occurrences). AKM usage and maintenance
should be lean; hence, ADMentor encourages knowledge
engineers not to copy much text into problem spaces, but to
leverage the Web. Hence, Web links e.g. to pattern texts can be
added in this step, and other model elements can be linked in.

With these concepts and standard UML tool extensibility
features, QOC diagram support3 almost comes for free:
questions (Q) and options (O) are modelled with ADMentor,
and criteria (C) are assumed to be supported by its host tool
(here: Sparx Enterprise Architect, see Section IV), just like
components and connectors in UML class or component
diagrams. We added QOC diagram support rather late in our
iterative development work, which demonstrates that such
extensions and configurations are indeed feasible. Only minor
additional customization effort had to be invested in the host
tool (i.e., the naming of link types via UML stereotypes).

C. Meta-Information Annotation (a.k.a. Typed Tagging)
Table 2 specifies the output of knowledge engineering acti-

vity B, annotate problems and options with ADK meta-

3 Question-option-criteria (QOC) diagrams were proposed in the HCI
community in the 1990s [12] and later picked up by the AKM community.

information. To compile the meta-information annotations in
the table, we reviewed the software architecture and method
engineering literature and reflected on own project experiences
(in software architect and project management roles):

TABLE 2. META-INFORMATION ABOUT RECURRING DESIGN PROBLEMS

Name Purpose, Rationale Sample Value(s)

Intellectual
Property Rights

Intellectual Property Rights (IPR)
for model element, e.g. confiden-
tiality level, copyright statement

Public, Company-
Confidential, ©
Company X, 2015

Knowledge
Provenance

Reference to a cited source and/or
acknowledgment of contributor

CCP book, PoEAA
website, Project Y,
Architect Z

Refinement
Level

The abstraction level on which
this problem typically occurs

Conceptual Level,
Technology Level

Project Stage Gate, milestone, phase and/or
elaboration point in incremental
and iterative design (in which this
problem is typically tackled)

Inception,
Elaboration,
Construction
(in OpenUP [15])

Organizational
Reach

Sphere of influence of the
problem

Enterprise, Division,
Business Unit,
Project, Subsystem

Owner Role The role (as defined e.g. in
OpenUP) that is responsible and
accountable for the decision

Application
Architect,
Integration Architect

Stakeholder
Roles

People with an interest in this
problem (note: the accountable
person is annotated as owner role)

Enterprise
Architects, Frontend
Developers, Testers

Viewpoint(s) e.g. one of the 4+1 views on
software architecture or a
Rozanski/Woods viewpoint [16]

Logical Viewpoint,
Deployment
Viewpoint

Our compilation of meta-information does not claim to be
complete; knowledge engineers can add and remove meta-
information as desired within their community contexts (e.g.,
to streamline their problem space modeling activities).
Activities D and F leverage this meta-information, which we
implemented with UML Tagged Values (see Section IV).

D. Tailoring (from Problem Space to Solution Space)
In the tailoring step, a problem space is trimmed down to

the problems and options that are relevant for a particular
project (context-specific filtering). The meta-information from
activity C can support this filtering work; for instance, a role-
or phase-specific problem space can be obtained this way.

This activity is not described in detail in this paper. Support
for it requires tool engineering rather than design science work.

E. Solution Space Creation
The following two user stories characterize this step:
• Full copy/complete instantiation story: “As a solution

architect starting a project, I would like to create a fully
populated solution space containing one open problem
occurrence for each problem and one option
occurrence for each option that came out of the
tailoring so that I receive guidance for my design work
and I do not forget to solve any problems.”.

• On demand instantiation story: “As a solution
architect, I would also like to be able to start with an
empty solution space and create problem occurrences
and option occurrences individually as needed during
the project so that my decision log has a minimal size”.

This activity also is straightforward to implement in tools.

F. Decsion Backlog Management (Solution Space Usage)
Semantically rich meta-information as defined in activity C

can be leveraged to search, filter and order solution space
models in activity F. When combined with context and state
information, a powerful and user-friendly representation of the
solution space results – a decision backlog [9]. Architects do
not have to follow any predefined decision making order (most
architects probably would not do so anyway); they simply pick
the decision backlog entries they deem to be particularly urgent
(and decidable) in/for the current design iteration. Modeling
tools can support such decision backlog elegantly in views and
widgets with table layouts that are configurable w.r.t. filtering
and ordering. Table 3 sketches such decision backlog view:

TABLE 3. DECISION BACKLOG (SIMPLE EXAMPLE/EXCERPT)

Problem
Occurrence

Status Viewpoint Owner
Role

Comple-
xity

…

Session State
Management
Occurrence 1

Decided Functional Web
architect

High …

Session
Database
Provider
Occurrence 1

Open Information Data
Architect

Medium …

… … … … … …

The problem state (on the occurrence level) is aggregated
from the associated option occurrence’s states in the following
way: A problem occurrence is in state open if all options are
eligible; it is in state not applicable if all options are neglected,
and in state decided if all options are either chosen or
neglected; it is partially decided in all other cases (additional
option states are tentative and challenged). Just like product
backlogs in agile practices, the decision backlog never has to
be emptied completely, as design time always is constrained.

Transition to technology level. The concepts introduced in
this section are not specific any host platform, but can be
realized in any extensible modelling tool. The following
Section IV transcends from platform-independent concepts to
one particular platform-specific design and its implementation.

IV. IMPLEMENTATION OF ADMENTOR (VALIDATION PHASE 1)
ADMentor is an add-in to Sparx Enterprise Architect (EA)

Version 10 (and higher). It is implemented in C# and uses
.NET Version 4.5. ADMentor comes with an UML Profile and
a MDG Technology (two extensibility concepts in Sparx EA)
that carry Architectural Knowledge Management (AKM)
semantics implementing the concepts from Section III.

Our rationale for the selection of EA as the UML tool and
general-purpose modeling platform to be extended is threefold.
First and foremost, it is used by many architects and therefore a
preferred choice of our industry partner. Secondly, it has
adequate support for rich text (e.g. Web links, bullet lists, etc.),
model refactoring and UML tagged values, all of which is
needed to implement our concepts. The third justification is
that an early proof-of-technology and the predecessor project
[11] demonstrated technical feasibility and usability of APIs
and extensibility mechanisms of EA (some implementation
difficulties had to be overcome).

The key features of ADMentor Version 1.1 are:

• Problem space modeling: recurring design decisions,
options to be considered – providing a checklist effect

• Model tailoring and solution space modeling: decisions
made and their rationale, decision backlog

• Model refactoring, reporting via Enterprise Architect
integration; modeling patterns (template configuration)

• Rich text editing, decision capturing with lightweight
decision capturing templates such as Y-statements

• Question, Option, Criteria (QOC) diagram support

The above feature list shows that that our implementation
stays very close to the concepts from Section III. The meta-
information elements from Table 2 are realized as UML tagged
values; the decision backlog is a customization of the package
browser, a standard EA feature. Additionally, ADMentor also
supports decision space analytics (e.g., number of options and
problems per package and meta-information tag and
breakdown of problem occurrences by state), model validation,
and a RESTful HTTP interface for tool integration.

Problems/options and their respective occurrences are
linked with the standard UML/EA concepts of classifiers and
instances [18]. The model tailoring and filtering capabilities are
based on tagged values (a standard UML element extension
mechanism [18]). The typed links are realized as connector
stereotypes that are defined in our UML profile. In addition to
the concepts introduced in Section III, we also added two
package stereotypes and additional links to our UML profile.
The link definitions in ADMentor are compatible with other
link modeling taxonomies; EA extensibility allows the user to
add even more stereotypes, e.g. for relationships defined in the
Kruchten/Lago/van Vliet ontology (see e.g. Chapter 3 in [1]).

Figure 3 on the next page shows a Problem Space Diagram
(PSD) with fundamental cloud computing ADs modelled in
ADMentor. Blue/dark diamonds represent recurring design
problems, i.e., the need for a decision (which should not be
confused with a quality attribute or stakeholder concern, e.g. in
late design); options appear as yellow/light rounded ovals. The
primary link between problems and options is an addressedBy
relation. Two recurring problems are linked this way here;
additional relationship links from Section III are shown in the
EA toolbar (on the left side). The element notes view on the
bottom right contains rich text including hyperlinks (to
websites, but also other model elements, e.g., UML classes).

Figure 4, also on the next page, is an Architecture
Overview Diagram (AOD) that illustrates the conceptual
architecture of ADMentor in a functional and logical view. The
figure shows the components of ADMentor (either through
customization of EA when possible or, alternatively, through
C# and .NET development), which can be traced back easily to
the research contributions from the previous section and the
tool requirements from Section II.

In the AOD, the components are placed in three logical
layers (presentation, business logic, and data access/persistence
layer) suggested by Fowler [4]. The left side of the AOD shows
components supporting particularly relevant features in the
standard EA product; the right side shows our extensions (add-
in components). Call and dependencies links are not shown due
to space constraints.

V. MODELLING ACTIVITIES (VALIDATION PHASE 2)
Our main validation type in phase 2 was action research

(i.e., use of concepts and tool on our own projects) [17]. One
validation objective was to reconfirm that architecture design
problem indeed recur (as already shown in a different technical
domain in our previous work).

We also evaluated the expressivity and usability of our
novel concepts (that address research questions 1 and 2 from
Section I) and their implementation and measured the
modelling and decision capturing efforts.

Fig. 4. ADMentor architecture (in a high-level functional/logical viewpoint)

A. A Problem Space for Cloud Computing
In parallel to concept creation and tool development, we

created a problem space model for cloud computing, a
technical domain that is of interest to many architects at
present. This model has the primary goal to demonstrate that
our modeling concepts work in practice and are beneficial to
architects. Some examples were already given (session state
management, session database provider, cloud service model,
and cloud deployment model as defined by NIST and [3]).
Other cloud design topics covered by the problem space are:

• Use of Cloud Computing Patterns (CCP) such as
hypervisor, map-reduce, and key-value storage [3].

• Patterns for multi-tenancy, workload, message delivery.
• Cloud service management (e.g., watchdog pattern).
 The patterns in the CCP book turned out to be well suited

for a PSD representation in ADMentor: some patterns share the
same problem statement and/or describe alternative solutions in
a design category, e.g. multi tenancy. The CCP website can be
linked to, which reduces the modeling effort significantly. No
content was copy-pasted, but URIs added; the package
structure in ADMentor mirrors that of book and website, e.g.,
the category “cloud application components” is found under
“cloud application architecture”. We blended in selected cloud
knowledge from other sources, including books, but also blogs
and own projects, and yielded 45 problems. All problems and
options were modelled rather tersely to minimize creation and
consumption effort (see Figure 4 in Section IV), but still be
informative in the sense of a checklist and pattern language

Fig. 3. Problem Space Diagram, Project Browser and Notes Editor in ADMentor (two sample problems and their options from cloud computing).

compass. The model was validated by creating a sample
solution space (see below). In addition, one of the pattern book
authors received a demonstration to confirm that the pattern
knowledge in the book is represented properly in ADMentor.

In a second step, an existing decision log from a cloud
project at our industry partner was transferred from Decision
Architect (see Section II) to ADMentor to show feasibility and
compatibility (of metamodels and tools) and to compare
expressivity of concepts and their implementation. 14 problems
were migrated (and re-modelled). We observed the same, or
even better, expressivity of model elements and links; rich text
notes in EA improve the user experience over plain text fields
(as used in Decision Architect). Being inspired by the states
suggested in the existing work [1], the state machine in
Decision Architect initially was more powerful; when we
realized this, we also integrated these concepts into ADMentor
and aligned them with the problem and option states
propagation from Section III. The linkage was achieved via the
Relationship Viewpoint in Decision Architect; decisions can
link to problem and option occurrences. No specific
semantically rich link type was defined for that, as the generic
trace links in UML/EA were deemed to be sufficient.

In a third step, 26 problems about enterprise application
architecture and enterprise integration (messaging) were also
modelled as recurring problems; while these decisions are not
specific to cloud computing, they continue to be relevant and
refine the ones in the CCP book. The session state management
problem and its pattern options from [4] fall in this category.

In total, Version 1.0 of the reusable problem space for
cloud computing compiles 85 problems and 226 options.

B. Instantiation of Cloud Problem Space
This validation activity targeted the goals of validating the

problem space instantiation of the ADMentor tool as well as
the completeness and appropriateness of the cloud problem
space that was created in validation activity A. This activity
was performed by one of the authors of the paper, an industrial
researcher who shadowed an architect of an ABB business unit.
The approach to this validation was to import the problem
space into the already existing UML model of a prototypical
ABB cloud application that was built based on the conceptual
architecture also used in step two of validation activity A. First,
the problem space was tailored to fit the specific project, e.g.,
by omitting the Enterprise Application Decisions package (see
step three in validation activity A), which was rated as not
relevant for this project. The ADMentor user then instantiated a
corresponding solution space and went through the problems
step by step to document the decisions retrospectively. Of the
total 48 problem occurrences in the joint cloud problem space
25 were completely solved, 4 partially solved, 8 deemed not
applicable and 11 left open. Additionally, 17 key problem
occurrences were linked to the corresponding model elements
in the structural architecture model.

The results of the validation activity were as follows: the
ADMentor user was able to complete the instantiation within a
relatively short time (around 2.5 hours). The tool provided
enough guidance to efficiently fulfill the task. In addition to the
retrospective documentation of the actually made 14 problem

occurrences, which had already partially been documented
using a different tool, 23 further decisions were uncovered.
Previously, these decisions were only implicitly documented or
not made at all. With the help of the cloud guidance model it
was possible to fill these gaps and capture this knowledge
which might otherwise have been lost or only recoverable with
significant additional effort.

C. Workflow Decision Modeling (with Industry Participants)
Our third validation activity was the participation in a two-

day community meeting of 26 software architects from various
German companies (including banks, insurance firms,
telecommunications service providers, and professional IT
consulting services). The action researcher prepared an initial
problem space for the design of workflows, via reflection of
own experience and an ad hoc literature review. He presented
the ADMentor vision as well as sample content from the initial
problem space to the meeting participants (at the start of the
meeting); e.g., the shown content included decisions about
transaction boundaries and service granularity. The action
researcher then facilitated a short exercise in which participants
were asked to identify recurring decisions themselves; selected
decisions were then discussed in the plenum. The attendee
feedback included general agreement as well as four additional
problems with options (e.g. on placement of business data in
workflow, process instance migration, and interface signature
sourcing). This activity reconfirmed the general hypothesis that
architectural decisions recur; as the modeling work was
continued during subsequent workshop presentations, it also
showed that the ADMentor tool can be used in meeting and
design workshop situations (for decision modeling on the fly).
The final problem space model for workflow design comprises
75 recurring problems with 150 options.

D. Third-party Problem Space Modeling
This validation activity concerned the retrospective

modeling of a problem space and several solution spaces for
industrial control systems. The goals were a) to validate
ADMentor’s problem space modeling capabilities concerning
expressiveness and efficiency , b) to verify the traceability
features to other model elements, and c) to gain experience on
working with multiple solution spaces for a given problem
space. In this case, an industrial researcher with no prior
experience with ADMentor created the problem space from
company-internal input, thus this validation activity concerns
an external application of ADMentor as problem space
modeling tool other than the tool authors themselves. However,
only qualitative statements about the application can be made.

In this validation activity the approach was to exploit an
existing technical report surveying the design concepts of
different control systems and to model the included problem
space. The problem space consisted of 16 problems and 36
options grouped into three different packages. Explanations for
the options were copied over from the document into the model
in some cases; in other cases, direct references to the technical
report were created because reading lots of text inside
Enterprise Architect proved to be cumbersome. From the
problem space, three solutions spaces for three different control
systems were derived. Existing UML models for these systems
were then copied into the same Enterprise Architect project so

that trace links between UML elements and ADMentor
elements could be created. For example, traces were modelled
from decisions to software components that had been
implemented as a consequence of a particular decision.

This validation activity provided the following results: we
noticed reported the ability to quickly (i.e., less than two hours)
to create the problem space with ADMentor based on the
available reference material. The expressiveness of ADMentor
was sufficient to capture the required information. In addition
the problem and solution space models provided a condensed
overview of the made decisions and neglected options which
was deemed useful. The creation of trace links between the
modeling elements worked successfully. This ability was well
received as tracing both from a particular UML element to an
ADMentor element and vice versa is supported. Thus, it is
convenient to derive the decisions attached to a specific
component in the model or to identify the components affected
by a specific decision. One challenge is that the solution spaces
are not updated when the problem space is extended, thus the
user needs to manually update the solution spaces. The
interplay between the different viewpoints of the Decision
Architect and ADMentor elements worked well. Architects
from an ABB business unit reviewed the resulting solution
space model informally and provided positive feedback about
accuracy and usefulness of the models.

Although ADMentor was not used for forward engineering
in this validation activity, its application proved valuable for
our industrial partner. The usability of the tooling was deemed
satisfactory and the instantiation of the problem space in three
different solution spaces was achieved quickly. The model can
potentially be used in the future for forward engineering when
new systems of the same class are designed.

Validation summary. The evaluation results demonstrate that
our concepts and their implementation work in practice; users
have to invest relatively little effort to be productive and
experience benefits. Hence, our research contributions and their
implementation answer research the questions from Section I.

VI. DISCUSSION
Contributions and their novelty. The lessons learned on
previous AKM projects were taken into account during design
and development of ADMentor. In response to RQ1 and RQ 2
from Section 1, a leaner approach is now promoted, which
means less modelling and model maintenance effort (for
knowledge engineers), and also less consumption effort (for
project architects). A decision backlog is available; meta-
information is more comprehensive and more flexible so that it
can be extended. We define AKM quadruples (i.e., problem,
option, problem occurrence, option occurrence) and a
workflow for processing them. The quadruples make the
architectural decision knowledge more consumable, reusable
and manageable. They are created and consumed in the context
of a general-purpose modeling tool. In this approach, problems
and options are harvested and curated as reusable assets;
problem and option occurrences are then created by project
architects as needed. This separation of knowledge
management into 2x2 dimensions (and/or perspectives) is a key
differentiator between our approach and the related work. Our

meta-information attribution and its implementation with UML
tagged values differs both from the universal/fixed modeling
approach in SOAD and the findings and results of the
GRIFFIN project (see Chapters 6 and 8 in [1]): unlike, SOAD,
the GRIFFIN core model only defined knowledge entities, but
not their attributes. For ADMentor, we found a “meet-in-the-
middle” compromise: decision templates can be flexibly
configured via the rich text editor; additional tagged values
(meta-information annotations) can also be defined.

ADMentor provides a superset of the functionality in
previous research prototypes, but has a very different technical
design and implementation (e.g., metamodel, tool architecture,
and codification in .NET/C#). The most significant differences
to previous implementations are: a) any decision capturing
template can be used in the rich text notes, b) an option is not
physically contained in a problem, c) multiple options can be
chosen, d) there is rich but flexible meta-information tagging,
and e) the list view of the package browser serves as a full-
fledged decision backlog now. Our approach does not mandate
UML, but can be implemented in any extensible modeling tool
that meets the requirements from Section II. Our UML profile
can be exported via a platform feature for reuse.

Threats to validity of validation. We aimed at capturing both
the quality of the tool and the created guidance models as well
as the perceived efficiency in working with the tool. However,
threats to the validity of our validation activities still exist: The
researchers performed the majority of the validation activities
themselves (action research). Furthermore, the amount of case
studies was of course not statistically relevant, so all our results
reside on the qualitative level. Thus, the external validity of our
validation results, at least regarding efficiency, might be
reduced. Finally, a threat regarding the created problem spaces
model exists: the cloud computing domain is still evolving, and
other architects might find other sources of more suitable
knowledge and guidance than the ones that we picked.

We countered these three threats by using our approach in
different contexts and with different people. We did not rely on
a single case study, but performed several quite different
modeling and decision making activities to broaden the
validation scope. Additionally, we collected feedback on our
approach and the resulting models from external stakeholders.

Impact on practice. We foresee problem space models to
become virtual mentors making formerly tacit knowledge
explicit in an easy-to-consume way; this concept is well suited
for globally distributed development organization (with some
amount of coordination). As a result, better decisions can be
made in less time; the decision makers are empowered, but
also held accountable. Deviations from group-level standards
around patterns, technologies, and products can be chosen; but
such new, non-standard solutions to known problems are now
documented along with justifications. To increase the reuse
potential and the longevity of the architectural knowledge,
problems and options are pointed out (as an incentive to the
architect/decision maker to get engaged), but not blindly
promoted. We do not to try to make the chosen solutions
reusable (as this would lead to an unrealistic one-size-fits-all
approach to architecting systems that ignores project context,

requirements, and constraints). As a result, architects remain
masters of their project’s destiny with ADMentor, but their
decisions are backed by the guidance and recommendations
given by the community that contributed to the problem space
models used. For instance, the cloud guidance model can be
applied and extended on future research and development
projects. We hope that it will also serve as a steward for future
decision modeling work in the community.

VII. SUMMARY AND CONCLUSIONS
To overcome inhibitors for decision capturing and sharing,

we conceptualized and implemented novel approaches to
problem space modeling, solution space modelling, and
decision backlog management. Problem spaces look forward
and anticipate decisions to be made along with their options;
solution spaces offer a lightweight form of decision guidance
and capturing of past decisions to project architects. We
implemented our modeling concepts and applied them to craft
problem and solution space exemplars for cloud computing,
workflow management, and distributed control systems.

Problem and solution spaces present decision knowledge to
architects in a form that can be seen as checklist with work
items. This approach to knowledge reuse makes weaker
assumptions about target environment and target audience than
previous knowledge sharing attempts – and therefore promises
to produce more timeless knowledge and guidance that is
easier to accept. As a result, poor decisions can be avoided and
no important decisions are missed; faster time-to-market and
less technical risk on development projects can be achieved.

 The extensible UML modeling tool Sparx Enterprise
Architect is the carrier platform of ADMentor; however, our
concepts are designed and presented in such a way that they
also work in other infrastructures (e.g. project wikis, decision
capturing spreadsheets and other semi-structured decision
logs).4 We consider integrating ADMentor with project
management and team collaboration tools. ADRepo, a Web
repository with a publicly accessible RESTful HTTP interface,
will simplify such integration. Potential future work also
includes an extension of ADMentor to represent architectural
refactorings as architectural decisions to be revisited.

ACKNOWLEDGMENT
The research work presented in this paper was supported by

an ABB Research Grant 2014. We would like to thank Tobias
Blaser, Zoya Durdik, Christoph Fehling, Laurin Murer, Martin
Naedele, Roland Weiss and the participants of the 8th workshop
on software architectures at Softwareforen Leipzig for their
input, support and/or constructive criticism.

REFERENCES
[1] M. Ali Babar, T. Dingsøyr, P. Lago, H. van Vliet (eds.), Software

Architecture Knowledge Management: Theory and Practice, Springer-
Verlag, 2009.

[2] M. Anvaari, O. Zimmermann, Towards Reusing Architectural
Knowledge as Design Guides, Proc. of SEKE 2014, KSI, 2014.

4 We plan to make the ADMentor tool and a cloud problem space that is not
company-specific available publicly in the future. The current project website
is: http://www.ifs.hsr.ch/ADMentor-Tool.13201.0.html?&L=4

[3] C. Fehling, F. Leymann., R. Retter, W. Schupeck, P. Arbitter, P., Cloud
Computing Patterns, Springer 2013.

[4] M. Fowler, Patterns of Enterprise Application Architecture. Addison
Wesley, 2003.

[5] M. Fowler, Richardson Maturity Model,
http://martinfowler.com/articles/richardsonMaturityModel.html

[6] A. Gaind., Key Architecture Decisions Template, October 2005,
Available via http://www.bredemeyer.com

[7] P. Hruschka, G. Starke, arc42, Resources for software architects,
http://arc42.org/

[8] ISO/IEC/IEEE, Systems and software engineering – Architecture
description, ISO/IEC/IEEE 42010:2011(E), Dec. 1 2011,
http://www.iso-architecture.org/ieee-1471/templates/

[9] P. Kruchten, What color is your backlog?, via InfoQ blog post, 2010.
[10] M. Lindvall, I. Rus, R. Jammalamadaka, and R. Thakker. Software

Tools for Knowledge Management: A DACS State-of-the-Art Report.
Technical report, Fraunhofer Center for Experimental Software
Engineering Maryland and The University of Maryland, 2001.

[11] C. Manteuffel, D. Tofan, H. Koziolek, T. Goldschmidt, P. Avgeriou:
Industrial Implementation of a Documentation Framework for
Architectural Decisions. Proc. Of IEEE/IFIP WICSA 2014, IEEE
Computer Society, Los Alamitos (2014).

[12] A. MacLean, R. Young, V. Bellotti, and T. Moran, Questions, Options,
and Criteria: Elements of Design Space Analysis, Human-Computer
Interaction, 6 (3&4), 1991.

[13] C. Miksovic, O. Zimmermann, Architecturally Significant
Requirements, Reference Architecture and Metamodel for Knowledge
Management in Information Technology Services. Proc. of IEEE/IFIP
WICSA 2011 (2011), IEEE Computer Society, Los Alamitos (2011).

[14] M. Nygard, Documenting architecture decisions,
http://thinkrelevance.com/blog/2011/11/15/documenting-architecture-
decisions

[15] Open Unified Process (OpenUP), http://epf.eclipse.org/wikis/openup/
[16] N. Rozanski, E. Woods, Software Systems Architecture : Working With

Stakeholders Using Viewpoints and Perspectives, Addison Wesley,
2005.

[17] M. Shaw, Writing Good Software Engineering Research Papers:
Minitutorial. Proceedings of the 25th International Conference on
Software Engineering. IEEE Computer Society, 2003.

[18] Sparx Enterprise Architect Version 11 Users Guide,
http://www.sparxsystems.com/enterprise_architect_user_guide/11/

[19] The official site of the Stage-Gate®, http://www.stage-gate.com/
[20] A. Tang,, M. Ali Babar,, I. Gorton., and J. Han, 2005. A Survey of the

Use and Documentation of Architecture Design Rationale. Proc. of the
5th Working IEEE/IFIP Conference on Software Architecture. IEEE
Computer Society, 2005.

[21] A. Tang, Y. Jin, J. Han: A rationale-based architecture model for design
traceability and reasoning. Journal of Systems and Software 80(6): 918-
934 (2007).

[22] J. Tyree, A. Akerman: Architecture Decisions: Demystifying
Architecture. IEEE Software 22(2): 19-27 (2005)

[23] R. Weinreich, I. Groher. A Fresh Look at Codification Approaches for
SAKM: A Systematic Literature Review. Proc. of ECSA 2014, Springer.

[24] U. Zdun, R. Capilla, H. Tran, O. Zimmermann, Sustainable
Architectural Design Decisions, IEEE Software, Volume 30, Number 6
(2013).

[25] O. Zimmermann, An Architectural Decision Modeling Framework for
SOA and Cloud Design, SEI SATURN 2010 Tutorial, page 14. SEI
Techncial Library, http://resources.sei.cmu.edu/library/

[26] O. Zimmermann, C. Miksovic, Decisions Required vs. Decisions Made:
Connecting Enterprise Architects and Solution Architects via Guidance
Models, in: I. Mistrík, A. Tang, R. Bahsoon, J. Stafford (eds.), Aligning
Enterprise, System, and Software Architectures. IGI Global (2013).

[27] O. Zimmermann, U. Zdun, T. Gschwind, F. Leymann, Combining
Pattern Languages and Architectural Decision Models into a
Comprehensive and Comprehensible Design Method. Proc. of
IEEE/IFIP WICSA 2008. IEEE Computer Society, Los Alamitos (2008).

http://www.ifs.hsr.ch/ADMentor-Tool.13201.0.html?&L=4

	I. Introduction
	II. State of the art and Practice (and Derivation of AKM Tool Requirements)
	A. ISO/IEC/IEEE 42010 and Practitioner Templates
	B. Research Tools (Brief Recapitulation)
	C. Decision Architect (Documentation Viewpoints)
	D. SOAD and SDA (2006-2011)

	III. Conceptual Design of ADMentor
	A. Metamodeling and Problem Space Creation
	B. Problem Space Modelling (Problems, Options)
	C. Meta-Information Annotation (a.k.a. Typed Tagging)
	D. Tailoring (from Problem Space to Solution Space)
	E. Solution Space Creation
	F. Decsion Backlog Management (Solution Space Usage)

	IV. Implementation of ADMentor (Validation Phase 1)
	V. modelling activities (Validation phase 2)
	A. A Problem Space for Cloud Computing
	B. Instantiation of Cloud Problem Space
	C. Workflow Decision Modeling (with Industry Participants)
	D. Third-party Problem Space Modeling

	VI. Discussion
	VII. Summary and Conclusions
	Acknowledgment
	References

