Sandro
Scheiwiller

Truck Route

Smart Routing of a Logistics Platform

Truck Route

Select Clusters Select truck Map Sateite =

Volvo / ATV210 /2451658 412 v @

Select content type /Z,
Glass v LA +

Selected recycling point

The form in which the user is able to select container clusters, truck
and content type and send the request to the API.

1. Request

The result view in which the different algorithms can be compared to
each other.

1. Request

Lo
O
?\ﬁ' hoses @ OERLIKON gy
n = EE
o
@928 o
AT
,ﬂavﬁk‘ Z“”:
(B 2 o
o vz B
:)
1 +

In this result the greedy by filled volume algorithm performed best
according to our chosen metric m[sup]3[/sup]/km.

B HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

FHO Fachhochschule Ostschweiz

Students
Examiner
Subject Area
Project Partner

Cyril Kyburz, Sandro Scheiwiller

Mirko Stocker

Internet Technologies and Applications
Scoping AG

Introduction: Recycling containers need to be regularly emptied using trucks.
TrackOrTruck, a new startup, wants to support the process of emptying these
containers. To achieve this, the recycling containers will be equipped with sensors,
which will transmit their current filling level to the cloud. The collected data opens up
new possibilities: As of now, an operator has to plan a route for the truck driver based
on his experience. The goal of this project is to help the operator by providing
different, optimized routes using the collected data. The route should be optimized for
the ratio between the amount loaded and the kilometers driven. In addition, the truck
should not necessarily be filled to the maximum.

Procedure / Result: Two applications were developed during this thesis:

A HTTP API which calculates routes. The client sends the API a request, including a
truck, a collection of containers and the start and end point of the route. Based on the
data provided, the API returns multiple possible routes. The API was developed using
TypeScript and deployed as a stateless AWS Lambda function.

The process by which the routes are generated can be divided into three steps:

= The container cluster collection are first analyzed. For analyzing, a dynamic
programming in-advance algorithm to solve our version of the knapsack problem
and a greedy algorithm using three different prioritization strategies are used.
Depending on the strategy, the containers nearby, the containers with the highest
filling level or the containers with the most volume are prioritized. This results in
four different subsets of the original container cluster collection.

For each subset an API request is sent to the Google Directions API. The
Directions API approximates the traveling salesman problem and returns a route
where the container clusters are visited in an order as to minimize the travel time of
the route.

For each received solution of the Directions API, six key figures are calculated,
such as load per kilometer, cost and duration of the journey. Based on the key
figure load per kilometer the solutions are sorted and returned, best first.

A web app to demonstrate and test the API. A user can select container clusters, a
truck and a content type and send the request to the APP. After receiving the
response the different route candidates are displayed with all of their key figures and
a map showing the route. The web app was developed using TypeScript and the
frontend library React.

Result: The result is a fully tested and robust API that is vertically and horizontally
scalable and allows to calculate optimized routes. To meet our high quality
requirements we followed state of the art coding guidelines. The API is also flexible
and works for all regions of the world covered by the Directions API. It currently
supports glass and waste containers. In the future the variety of supported container
contents could be easily extended.

Studien- und Semesterarbeiten 2019 = Informatik

