Visual OO Debugger

A VS Code extension for visualizing debugger information

at runtime

Graduate

- A
Alexandre Ichiro
Lagadec

Pascal Schiirmann

Gino Cardillo

Advisor
Prof. Mirko Stocker

Co-Examiner
Leo Biittiker, yonesu
GmbH, Olten, SO

Subject Area
Software Engineering -
Core Systems

OOST

Introduction: Object-oriented programming can be a
challenge for inexperienced or new developers. And
teaching object-oriented programming can be just as
challenging. In the autumn term of 2021, we created
the VS Code extension Visual OO Debugger, VOOD
for short, whose goal was to ease the process of
learning and teaching the concepts of object-oriented
programming. It achieves this by using debugger
information at runtime to visualize objects and
variables in a graph.

Objective: The goal of this project is to extend the
VOOD with more valuable features, as well as to
adapt the code to facilitate further extension. The
current library used for visualization, vis.js, is a great
starting point, but it has its limitations. Thus, this
project's main feature is adding the option to change
the visualization style. Currently, only Java is
supported by VOOD. While the support of other
languages is out of scope, it should be possible to
add support for them. Since the Java-specific parts
are intertwined with the rest of the debugger, they
must be separated.

Result: The result was a new version of VOOD with
many new features and improvements. A new
visualization was added that uses the JointJS library.
JointdS was already evaluated in the term project and
was deemed fit as an alternate visualization. It offered
more flexibility for customization but at the cost of
increased complexity. Another new feature was the
option to choose a stack frame of the call stack in a
dropdown and visualize it. By clicking on a node, it
collapses with its referenced nodes, and they form a
cluster. Developers can open those clusters either by
clicking on them individually or clicking the left button
in the upper right-hand corner to open all clusters

JointJS visualisation
Own presentment

opLef

Point

topLeft, &
bottomRight,

color,

color,

t.println(rect); Fect = Rectangle@ld "topLeft”

simultaneously. Dragging a node or cluster of nodes
over the right button in the upper right-hand corner
hides it from the visualization. Clicking this button will
show all hidden nodes and clusters again. These are
just a fraction of the features and improvements
implemented in this project.

Stack frame selection and new buttons (upper right-hand
corner)
Own presentment

= Visual Debugger X

R 2

Fibonacci.fibonacciLoop(int)
Fibonacci.fibonacciLoop(int)
Fibonacci.playground()
App.main(String[])

/

(Biglnteger):
(int) bitCountPlusOne: 0
(int) bitLengthPlusOne: 0
(int) firstNonzeroIntNumPlusTwo: 0
(int) Iovlles\tSetBnPluﬁTwo 0
e

Clustered node
Own presentment

second

App.main(String[l)

Eastern Switzerland University of Applied Sciences | Bachelor Theses 2022 | Bachelor of Science FHO in Informatik

