
Fabrizio
Lazzaretti

Linus
Basig

CloudEvents Router

Problem: CARU AG is an AgeTech startup with the mission to help the elderly live
independently for longer. Its internet-connected device allows calling for help by voice
command. In addition to this base functionality, the device is equipped with multiple
sensors that enable a variety of data-driven functionalities.
The software architecture used by CARU AG is heavily event-driven. The different
software components publish events whenever something notable happens. In turn,
other components react to these events and publish new events themselves. The
events are structured according to the CloudEvents specification of the Cloud Native
Computing Foundation.
CARU AG wants to create a unified event plane where events can flow between all
connected systems. These include the ones on the device, in the cloud, and
potentially even from third parties. However, always broadcasting each event to all
systems would be inefficient and cause security risks. We address this shortcoming
by introducing the CloudEvents Router. As an implementation of the Content-Based
Router pattern described in "Enterprise Integration Patterns" by Hohpe and Wolf, the
router is responsible for routing the events between the different systems according
to the event fields defined in the CloudEvents specification. Because of the diversity
of hardware and limited resources available in the target environments, the
architecture has special requirements regarding portability, resource usage, and
extensibility.

Approach: As a starting point, we conducted extensive market research to assess
already existing products that can support this use case. We found one solution with
much potential: Apache Camel. Unfortunately, Camel does not meet all the resource
requirements and misses support for one of the desired runtime environments.
To create a solution that fulfills all these requirements, we iterated between creating
comprehensive architecture documentation and prototyping different aspects of the
problem. After the design of the software architecture, we implemented our solution
and applied pair programming along the way.

Result: We created and open-sourced a CloudEvents Router proof of concept
implementation in the Rust programming language (https://github.com/ce-rust/cerk).
To achieve the desired portability, we based the architecture on an event-driven
Microkernel, which supports the platform-specific implementation of individual
components.
The second deliverable is a report on our experience using the Rust programming
language for the first time. After a frustrating beginning, we started to enjoy using it.
Rust brings all the advantages of strongly typed languages plus some novel additions
like its ownership model and safe memory management. However, these new
concepts are also the reason for the steep learning curve. Fortunately, the
exceptionally helpful error messages provided by the compiler make it easy to find
one's mistakes. Finally, the tooling provided by the Rust Team is thoughtfully
integrated. The creators of Rust brought together the best practices from many other
programming languages and made them the default.

The CARU Smart Sensor placed in the home of a senior citizen

Example deployment of the CloudEvents Router

The flow of a CloudEvent through the example deployment of the
CloudEvents Router

Studien- und Semesterarbeiten 2020 ■ Informatik

CARU AG

Own presentment

Own presentment

CARU AG, Zürich, ZürichProject Partner
Networks, Security & Cloud InfrastructureSubject Area
Prof. Dr. Olaf ZimmermannExaminer
Fabrizio Lazzaretti, Linus BasigStudents


