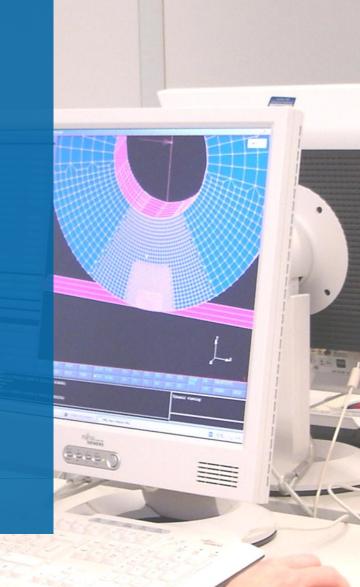


Kritische Dehnungen als
Auslegungskriterien auch in FEM-Simulationen



INSTITUT FÜR WERKSTOFFTECHNIK UND KUNSTSTOFFVERARBEITUNG

Prof. Dipl.-Ing. Johannes Kunz Dipl.-Ing. Mario Studer

FHO Fachhochschule Ostschweiz

Das IWK ein Institut der Hochschule für Technik Rapperswil

Kurzvorstellung IWK

Prof. Dr. Frank Ehrig Institutsleitung, Spritzgiessen, Bauteilauslegung

Prof. Dr.
Markus Henne
Institutspartner
Leichtbau,
Faserverbundtechnik

Prof.
Daniel Schwendemann
Institutspartner
Compoundierung,
Materialentwicklung

Zahlen zum IWK

- Gründung 2005
- 20 Mitarbeiter (Absolventen, Industriefachleute)

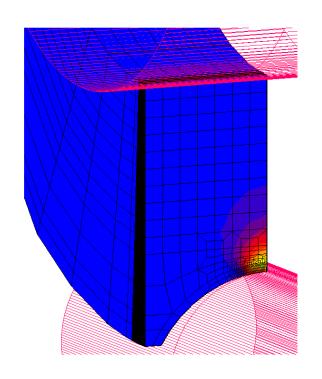
Aufgaben des IWK

- Ausbildung (Bachelor Maschinentechnik | Innovation; Master of Science in Engineering)
- Forschung & Entwicklung entlang der gesamten Wertschöpfungskette
- Dienstleistung in Form von Prüfungen und Tests sowie Simulationen

Kernkompetenzen des IWK

- Spritzgiessen; Faserverbundtechnik; Compoundierung (Extrusion)
- Produktentwicklung, Werkzeug- und Prozesstechnik
- Einsatz von Simulationstools

- Einleitung
- Festigkeitsbedingung
- Dehnungsbezogene Auslegung
- Dehnungen als werkstoffmechanische Versagensgrössen
- Kritische Dehnung ein wichtiger Werkstoffkennwert
- Werkstoffmechanisches Verständnis
- Dehnungsbezogene Auslegung mit FEM-Simulationen
- Illustrative Beispiele und Anwendungen
- Fazit



Auslegung:

Definition von Bauteilgeometrie und Werkstoff aufgrund der funktionellen Anforderungen und Betriebsbedingungen, insbesondere auch der mechanischen Beanspruchung

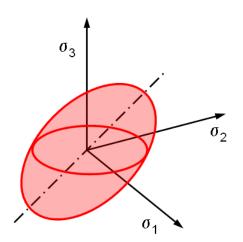
- Festigkeitsrechnung im Zentrum
- Herkömmliche Auslegung: Aufgrund zulässiger Spannungen
- Festigkeitsbedingung:

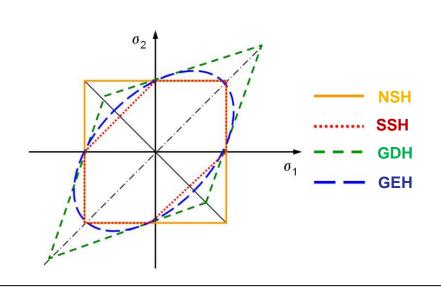
$$\sigma_{max} \le \sigma_{zul} = \sigma_G \cdot \frac{C}{S}$$

Auslegung aufgrund zulässiger Spannungen

Festigkeitsbedingung:

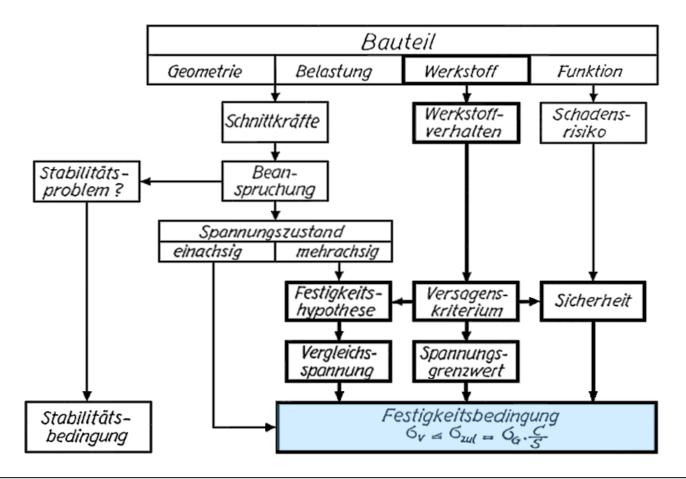
$$\sigma_{max} \le \sigma_{zul} = \sigma_G \cdot \frac{C}{S}$$
 bzw. $\sigma_V \le \sigma_{zul} = \sigma_G \cdot \frac{C}{S}$


σ_{max}	Höchstspannung im Bauteil bei einachsigem Spannungszustand resp. Einachsige Vergleichsspannung σ_V bei mehrachsigem Spannungszustand
σ_{zul}	Zulässige Spannung
σ_G	Spannungs-Grenzwert für die Belastbarkeit des Werkstoffs
С	Einflussfaktor
S	Sicherheitsfaktor


Mehrachsiger Spannungszustand:

 Vergleichsspannung: Funktion der Hauptspannungen, je nach Festigkeitshypothese

$$\sigma_V = \sigma_V(\sigma_1, \sigma_2, \sigma_3)$$



- Normalspannungshypothese (NSH): (Coulomb)
- Schubspannungshypothese (SSH): (Tresca, Mohr)
- Gestaltänderungsenergiehypothese (GEH): (von Mises)
- Grösstdehnungshypothese (GDH): (Navier)

Spannungsbezogene Festigkeitsrechnung: Schema

Vorteile der dehnungsbezogenen Auslegung

Dehnung bei Kunststoffteilen i. A. geeigneteres Kriterium als Spannung: [Menges u.a., 1967 – 1977]

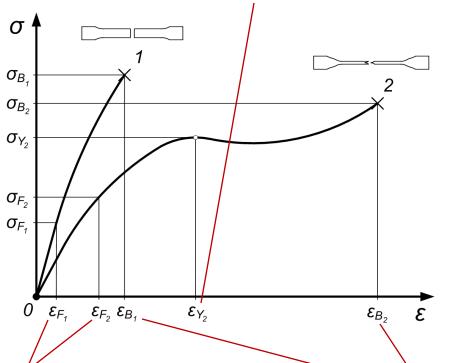
- Werkstoffmechanisch klare Versagenskriterien
- Denken in Verformungen: Erleichtertes Erfassen des Kunststoffverhaltens unter mechanischer Belastung
- Verformungen (Dehnungen) sind direkt sicht- und messbar, Kräfte (Spannungen) dagegen nicht
- Dehnungen sind die natürlicheren, anschaulicheren Grössen als die Spannungen
- Dehnungsbezogene Auslegung erfasst das charakteristische Versagensverhalten der Kunststoffe besser
- Einfacherer Berechnungsvorgang

■ Verformungsbedingung: wie Grösstdehnungshypothese (Navier, 1864)

$$\varepsilon_V = max(\varepsilon_1, \varepsilon_2, \varepsilon_3) \le \varepsilon_{zul} = \varepsilon_G \cdot \frac{C}{S}$$

Bestimmung der maximalen Dehnung: Verallg. Hookesches Gesetz

$$\varepsilon_1 = \varepsilon_{1e} - \mu \cdot (\varepsilon_{2e} + \varepsilon_{3e}) = \frac{\sigma_1}{E_{C1}} - \mu \cdot \left(\frac{\sigma_2}{E_{C2}} + \frac{\sigma_3}{E_{C3}}\right)$$


$$\varepsilon_2 = \varepsilon_{2e} - \mu \cdot (\varepsilon_{3e} + \varepsilon_{1e}) = \frac{\sigma_2}{E_{C2}} - \mu \cdot \left(\frac{\sigma_3}{E_{C3}} + \frac{\sigma_1}{E_{C1}}\right)$$

$$\varepsilon_3 = \varepsilon_{3e} - \mu \cdot (\varepsilon_{1e} + \varepsilon_{2e}) = \frac{\sigma_3}{E_{C3}} - \mu \cdot \left(\frac{\sigma_1}{E_{C1}} + \frac{\sigma_2}{E_{C2}}\right)$$

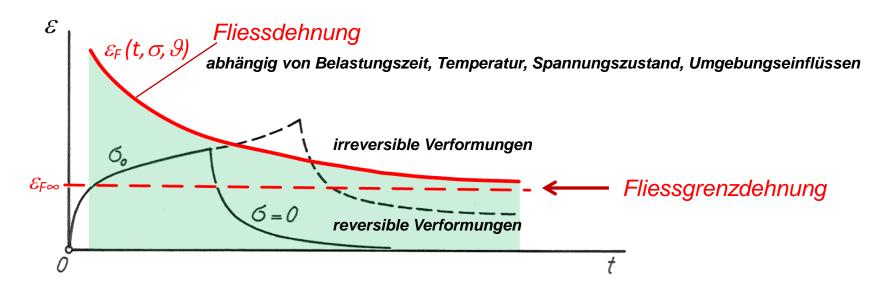
Fliessdehnung
Vermeiden irreversibler Verformungen
und Beeinträchtigung der Transparenz

Bruchdehnung

Kriterium bei sprödem Verhalten

Dehnungen als Versagenskriterien:

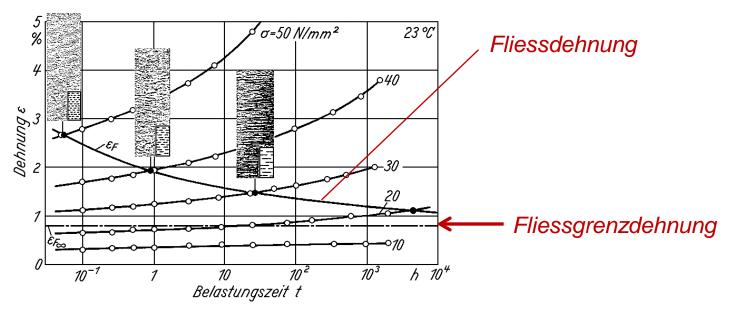
- **Bruchdehnung** ε_{B}
 - bei sprödem Verhalten
- **Streckdehnung** ε_{Y}
 - bei zähem Verhalten, z.B. zwecks Vermeiden von Verstreckungen und Weissbruch
- Fliessdehnung ε_F : Dehnung beim ersten Auftreten von Schädigungen (Bildung von Fliesszonen, Crazes, Mikrorissen)
 - für jedes Werkstoffverhalten, z. B. zwecks Vermeiden irreversibler Verformungen oder Beeinträchtigung der Lichtdurchlässigkeit
- **Fliessgrenzdehnung** $\varepsilon_{F\infty}$: Asymptotischer Grenzwert der Fliessdehnung

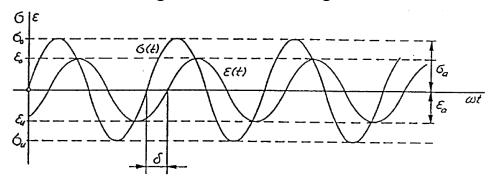


Fliessdehnung:

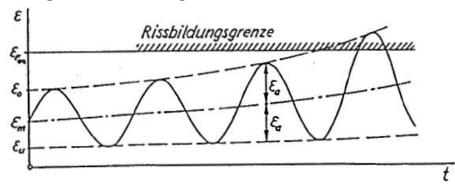
Grenze zwischen reversiblen und irreversiblen Verformungen

Fliessgrenzdehnung:


in weiten Grenzen unabhängig von Belastungszeit, Temperatur, Spannungszustand, Umgebungseinflüssen



- Versagenskriterium Rissbildung:
 Zeitdehnlinien von PMMA unter Zugbeanspruchung (nach Menges):
 - Einfluss von Belastungshöhe und Zeit auf Bildung, Länge und Anzahl von Fliesszonen (Crazes)

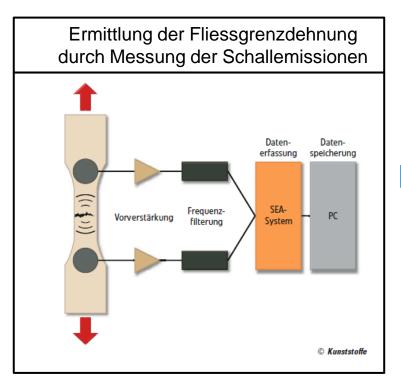


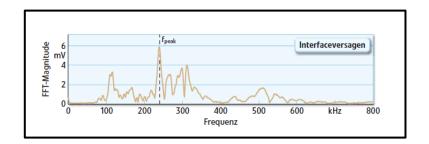
- Versagenskriterium Rissbildung (Fliesszonen, Crazes, Mikrorisse)
 - auch bei schwingender Belastung relevant:

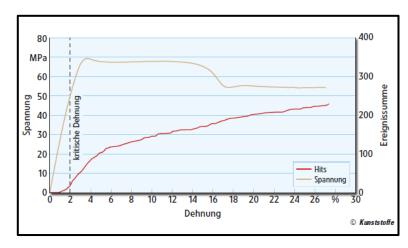
■ Initialisierung der Schädigung bei erstmaligem Überschreiten der Fliessgrenzdehnung:

Fliessgrenz- oder kritische Dehnung:

 korreliert – in Abhängigkeit der Kunststoffgruppen – mit ganz bestimmten Grössenordnungen der makroskopischen Dehnungen [Menges]


Kunststoffgruppe	$\mathcal{E}_{F_{\infty}}[\%]$	
Thermoplaste, amorph		
- ungefüllt	0,6 ÷ 1,0	
- gefüllt	0,3 ÷ 0,5	
Thermoplaste, teilkristallin, steif		
- ungefüllt	2,0 ÷ 4,0	
- gefüllt	1,0 ÷ 2,0	
Thermoplaste, teilkristallin, weich		
- ungefüllt	3,0 ÷ 6,0	
- gefüllt	2,0 ÷ 3,0	
Thermoplaste, glasmattenverstärkt	0,2 ÷ 0,7	
Elastomere, gefüllt	≈ 5,0	
Duroplaste		
- unverstärkt	0,1 ÷ 0,2	
- UD-verstärkt	0,05 ÷ 0,2	

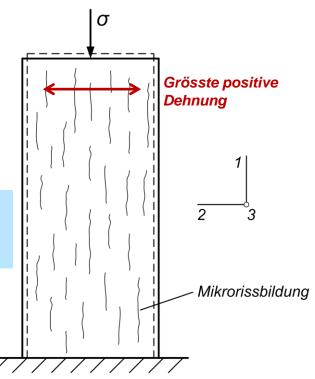




Fliessgrenz- oder kritische Dehnung:

Erweiterung der Datenbanken – neues Messprinzip vom IKT

[Bonten, C.; Skrabala, O.: Kunststoffe 102(2012)9, S. 82-85]

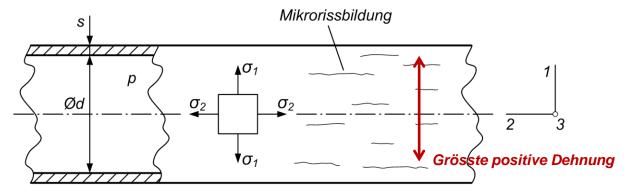


Beispiel: Einachsige Druckbeanspruchung

- Mikrorissbildung senkrecht zur grössten positiven Dehnung, d.h. parallel zur Beanspruchungsrichtung
- Grösste positive Dehnung: quer zur Beanspruchungsrichtung

$$\varepsilon_{max} = \varepsilon_2 = \varepsilon_3 = -\mu \cdot \varepsilon_1 = -\mu \cdot \frac{\sigma_1}{E_{C1}} \le \varepsilon_{zul}$$

Werkstoff kann unter Druck stärker schädigungsfrei beansprucht werden als unter Zug



[Kunz, J.: Kunststoffe 101(2011)4, S. 50-54]

■ Beispiel: Rohr unter Innendruck

Spannungszustand zweiachsig:

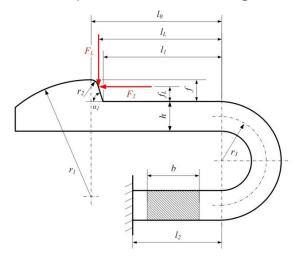
$$\sigma_1 = \frac{p \cdot d}{2 \cdot s} = 2 \cdot \sigma_2 \gg \sigma_3 \approx 0$$

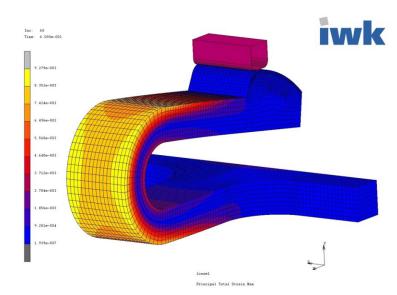
■ Grösste positive Dehnung in Umfangsrichtung:

$$\varepsilon_{max} = \varepsilon_1 = \varepsilon_{1e} - \mu \cdot \varepsilon_{2e} = \frac{p \cdot d}{2 \cdot s} \cdot \left(\frac{1}{E_{C1}} - \frac{\mu}{2 \cdot E_{C2}}\right) \le \varepsilon_{zul}$$

[Kunz, J.: Kunststoffe 101(2011)4, S. 50-54]

Denkbar einfaches Vorgehen:


- Festlegen der werkstoffmechanischen Beurteilungskriterien bzw. Versagensmechanismen, z.B. grösste positive Dehnung; Verformung
- Festlegen der massgebenden kritischen Dehnungswerte, z.B. Fliessgrenzdehnung, gegebenenfalls Streck- oder Bruchdehnung
- Preprocessing: Bauteilgeometrie, Belastungen, Randbedingungen, Werkstoffeigenschaften (lineares oder nichtlineares Verhalten)
- Postprocessing: Auswertung der grössten positiven Dehnung anhand der relevanten Postvariablen; je nach Programm:
 - Maximum Principle Elastic Strain (Ansys)
 - Principle Total Strain Max (MSC.Marc-Mentat; im Preprocessing zu definieren)
- Interpretation und Beurteilung der Ergebnisse, ggf. Modellanpassungen

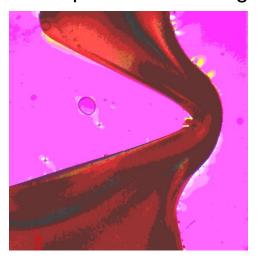


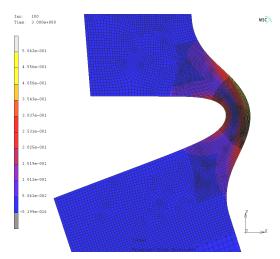
Beispiel: Gekröpfter Schnapphaken

Grösste positive Dehnung auf Aussenseite des Übergangsbogens

Numerisch-analytische Auswertung:

$$\varepsilon_{max} = \frac{3}{2} \cdot \frac{f \cdot h}{(l_0 + r_3)^2} \cdot \left[1 - 0.2 \cdot \left(\frac{l_2}{l_1} \right)^{0.3} \right] \cdot \left[1 - 0.85 \cdot \left(\frac{r_3}{r_1} \right)^{0.23} \right]$$

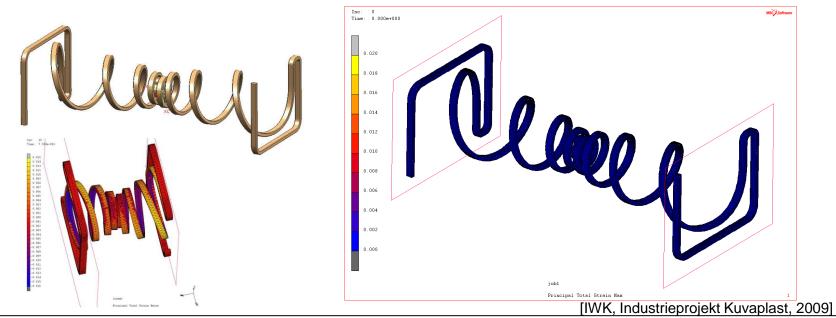

[Kunz, J., Frei, R.: SwissPlastics 32(2010)7-8, S. 18-20+22]



Beispiel: Filmgelenk

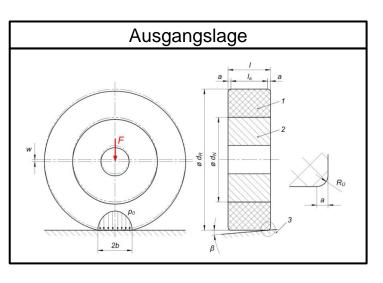
Grösste positive Dehnung auf Aussenseite

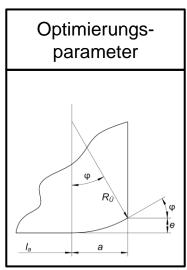
Numerisch-analytische Auswertung:

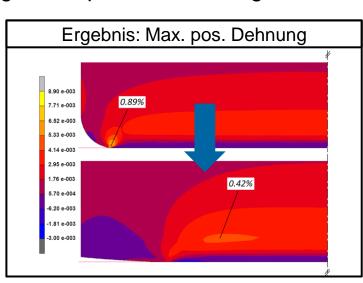

$$\varepsilon_b \approx \frac{h}{2 \cdot l^*} \cdot \beta = \frac{1}{\left(1.36 + 1.66 \cdot \frac{\rho_2}{\rho_1 + \rho_2}\right) \cdot \sqrt{\frac{\rho_1}{h}} + 1.5 \cdot \frac{l}{h}} \cdot \beta$$

[Kunz, J., Bachmann, S., Studer, M.: Kunststoffe 97(2007)12, S. 129-132]

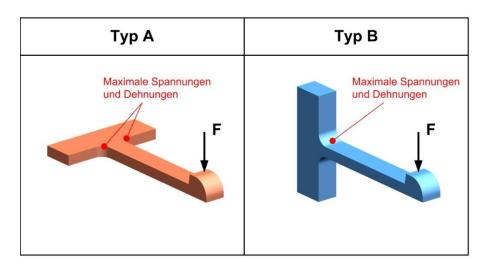
Beispiel: Spritzgiessbare Spiralschraubenfeder

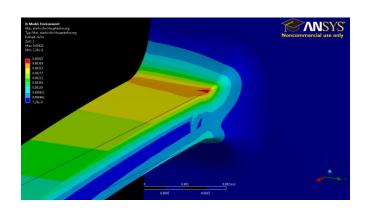

- Auslegungsziel: Optimale Geometrie für überall gleiche und möglichst geringe maximale Dehnung
- Vorgehen kombiniert analytisch-FEM-numerisch
- Ergebnis: Archimedische Spirale mit geeignet variierter Steigung (pat.)





- Beispiel: Profiloptimierung zylindrischer Laufrollen
 - Ziel: Geometrie optimal, d.h. möglichst geringe max. positive Dehnung


■ Ergebnis: Optimierungsprozess, der zu deutlicher Reduktion der kontaktmechanischen Beanspruchung ohne und mit Verkantung führt


[Kunz, J., Peter, M.: KunststoffXtra 2(2012)5, S. 25-28]

- Beispiel: Kerbwirkung bei der Anbindung von Schnapphaken
 - Grösste positive Dehnung beim Beginn des Übergangsradius

Numerisch-analytische Auswertung (Anbindung A):

$$\varepsilon_{max} = \alpha_{k\varepsilon} \cdot \varepsilon_n = \left[0.85 + 0.5 \cdot \left(\frac{r}{h}\right)^{-0.3}\right] \cdot \varepsilon_n$$

[Kunz, J., Studer, M.: Kunststoffe 97(2007)7, S. 46-51]

- Dehnungsbezogene Auslegung erfasst das charakteristische Versagensverhalten der Kunststoffe besser
- Verformungen (und damit die Dehnungen) sind direkt sicht- und messbar, Kräfte (und damit die Spannungen) dagegen nicht
- Dehnungen sind die natürlicheren, anschaulicheren Grössen als die Spannungen
- Dehnungsbezogene Auslegung in der Ingenieurausbildung bewusst lehren und in der Praxis konsequent anwenden auch bei FEM......
- Anliegen an die Werkstoffprüfung: Dehnungs-Grenzwerte systematisch messen und in den Datenlisten dokumentieren

Vielen Dank für Ihre Aufmerksamkeit!

Prof. Dipl.- Ing. Johannes Kunz +41 (0)55 222 49 85 jkunz@hsr.ch Dipl.-Ing. Mario Studer +41 (0)55 222 48 63 mstuder@hsr.ch

