

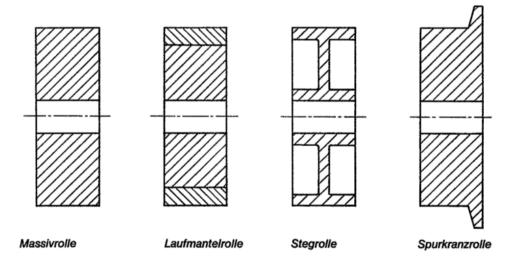
Kunststoff-Laufrollen und ihre kontaktmechanische Auslegung

Prof. Dipl.-Ing. Johannes Kunz

Kunststoff-Laufmantelrollen und ihre kontaktmechanische Auslegung

Inhalt

- 1. Einleitung
- 2. Kontaktmechanik der Laufrollen
- 3. Kontaktmechanische Auslegung
- 4. Untersuchungen am IWK
- 5. Rollen mit zylindrischem Laufmantel: Theoretische Linienberührung
- 6. Rollen mit sphärischem Laufmantel: Theoretische Punktberührung
- Rollwiderstand
- 8. Fazit und Ausblick

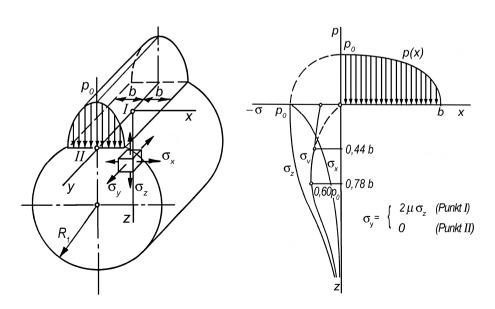


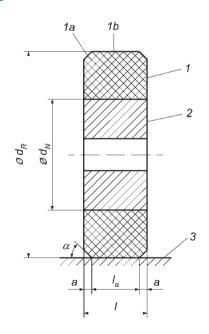
1. Einleitung (1/2)

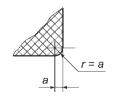
- Aktuelle Berechnungsgrundlagen für statisch belastete oder langsam bewegte Kunststoff-Laufrollen
- Laufrollen: Wichtige Elemente der Fördertechnik
- Laufrollen: Belastung typischerweise radial
- Grundformen, unterschieden nach Rollenkörper:

Schwalb, D-Allendorf/Lumda

1. Einleitung (2/2)

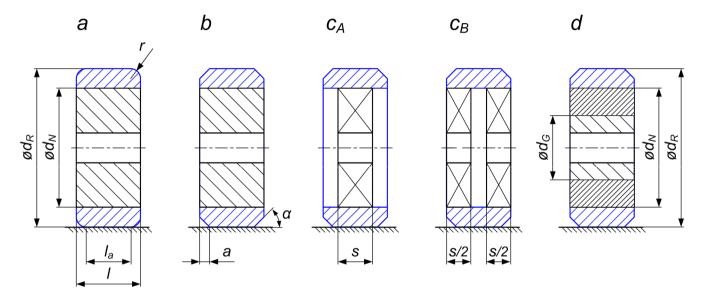

- Aufbau der Laufmantelrolle:
 Nabe (Rollenkörper) und Laufmantel
- Vorteilhafte Betriebseigenschaften:
 - Geringe Geräuschentwicklung
 - hohe mechanische Dämpfung
 - gutes Federverhalten
 - hohe Verschleissfestigkeit
 - geringes Gewicht
 - wirtschaftliche Fertigung (speziell Spritzgiessen)
- Bevorzugte Kunststoffe für den Laufmantel:
 - PA 6
 - PA 66
 - POM
 - PA-G
 - PE-HD
 - PUR
 - TPU





2. Kontaktmechanik der Laufrollen (1/4)

- Grundlage: Hertzsche Theorie der Kontaktprobleme (1881/1882):
 Mechanische Beanspruchung und Verformung bei der Berührung zweier Körper mit gekrümmten Oberflächen unter Kraftwirkung
- Kunststoff-Laufrollen: Berücksichtigung der endlichen Abmessungen und rollenspezifischen Geometrieparameter:
 - Verhältnis der Durchmesser Nabe / Laufrolle
 - Abstützung des Laufmantels auf der Nabe
 - Profilgeometrie, Rundungen, Anfasungen



2. Kontaktmechanik der Laufrollen (2/4)

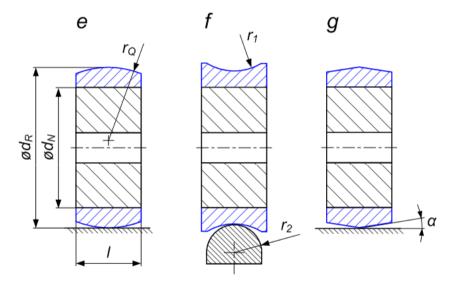
Laufrollen mit theoretischer Linienberührung – Zylindrischer Laufmantel

a: mit Rundung

b: mit Anfasung

 c_A : mit innerer partieller Abstützung

 c_B : mit äusserer partieller Abstützung


d: an 2K-Rolle mit weichem Radkörper

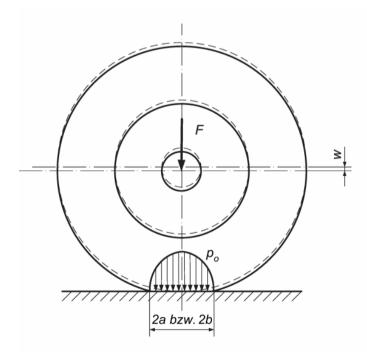
2. Kontaktmechanik der Laufrollen (3/4)

Laufrollen mit theoretischer Punktberührung – Sphärischer Laufmantel

Laufmantelprofil:

e: konvex

f: konkav


g: dachartig

2. Kontaktmechanik der Laufrollen (4/4)

- Kontaktmechanische Grössen:
 - a,b: Abmessungen der Kontaktfläche (halbe Längen) [mm]
 - p_0 : Maximaler Kontaktdruck (auch: p_{max}) [N/mm² = MPa]
 - w: Abplattung bzw. Achsverschiebung unter Belastung F [mm]
- Weitere interessierende Grössen:
 - σ_V : maximale Vergleichsspannung
 - \mathcal{E}_{max} : grösste positive Dehnung
 - M_R: Rollreibungsmoment

3. Kontaktmechanische Auslegung

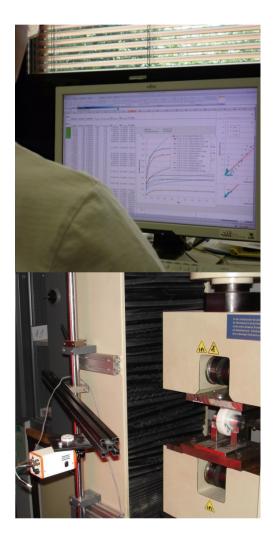
Zielkonflikt zwischen hoher Belastbarkeit und geringer Verformung

Belastbarkeit: Bedingung

$$p_{\text{max}} \le p_{zul} \approx k \cdot \sigma_{zul} = k \cdot \sigma_G \cdot \frac{C}{S}$$

 $k \approx 7$: Linienberührung $k \approx 5$: Punktberührung

Verformung: Bedingung


$$\varepsilon_{\max} = \max(\varepsilon_1, \varepsilon_2, \varepsilon_3) \le \varepsilon_{zul} = \varepsilon_G \cdot \frac{C}{S}$$

■ Brauchbarer Kompromiss:

$$\frac{w}{d_R} \le \left(\frac{w}{d_R}\right)_{zul} \approx \frac{1}{3} \cdot \left(1 - \frac{d_N}{d_R}\right) \cdot \mathcal{E}_{zul} \approx 3 \cdot 10^{-3}$$

4. Untersuchungen am IWK

Methodik:

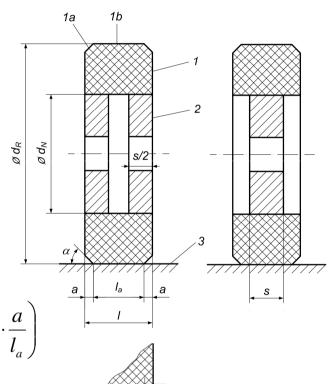
- Zusammenhänge analysieren, entscheidende Parameter erkennen
- Parametereinflüsse mit FEM-Variationen ermitteln
- Ggf. Versuche zur Verifizierung durchführen z.B. Videoextensometrie
- Erkannte Gesetzmässigkeiten mathematisch beschreiben
- Praktikable Berechnungsformeln entwickeln:
 Möglichst treffend, aber einfach
- Ggf. Empfehlungen für die Gestaltung ausarbeiten

5. Rollen mit zylindrischem Laufmantel: Theoretische Linienberührung (1/6)

Halbe Breite der rechteckigen Kontaktfläche:

$$b = 1.08 \cdot \sqrt{\frac{F \cdot d_R}{E_V \cdot l_a}}$$

Maximaler Kontaktdruck:

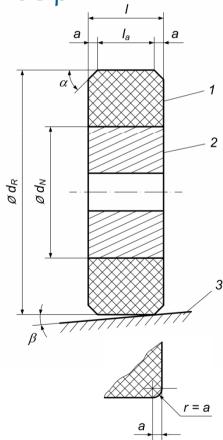

$$p_{\text{max}} \approx \left(1,38 - 0,44 \cdot \frac{s}{l}\right) \cdot p_0 \approx \left(0,81 - 0,26 \cdot \frac{s}{l}\right) \cdot \sqrt{\frac{F \cdot E_V}{l_a \cdot d_R}}$$

Abplattung:

$$w \approx 5.7 \cdot \frac{F}{E_V \cdot l_a} \cdot \left\{ 1.2 - 0.65 \cdot \frac{d_N}{d_R} \cdot \left[1 - k \cdot \left(1 - \frac{s}{l} \right)^2 \right] \right\} \cdot \left(1 - 0.95 \cdot \frac{a}{l_a} \right)$$

 $k \approx 0.94$: Innere Abstützung

 $k \approx 1,26$: Äussere Abstützung



5. Rollen mit zylindrischem Laufmantel: Theoretische Linienberührung (2/6)

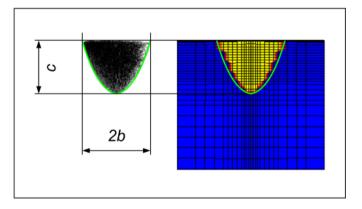
Verkanten zylindrischer Rollen: Einfluss des Verkantungswinkels β

- Problem: Übergang zu theoretischer Punktberührung
- Kontaktfläche: in etwa Ellipsensegment

Verkantungswinkel						
0°	0,5°	1°	2°	3°	4°	5°
	V	V	>			

5. Rollen mit zylindrischem Laufmantel: Theoretische Linienberührung (3/6)

Verkanten zylindrischer Rollen: Einfluss des Verkantungswinkels $0^{\circ} \le \beta \le 5^{\circ}$

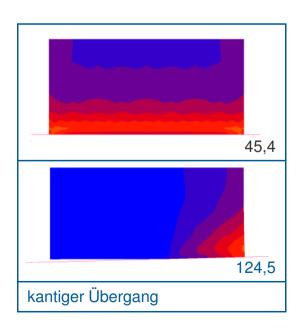

Maximaler Kontaktdruck:

$$p_{\text{max}} \approx 0.590 \cdot \sqrt{\frac{F \cdot E_{V}}{l_{a} \cdot d_{R}}} \cdot \left\{ 1 + \left[4.7 + 10 \cdot \left(\frac{a}{d_{R}} \right)^{0.25} \right] \cdot \beta^{0.6} \cdot \left(\frac{F}{E_{V} \cdot l_{a}^{2}} \right)^{-0.25} \right\}$$

Maximale Vergleichsspannung nach von Mises (GEH):

$$\sigma_{V \max} \approx p_{\max} \cdot \left[1,41 - 0,65 \cdot \left(1 - e^{-160 \cdot \beta}\right)\right]$$

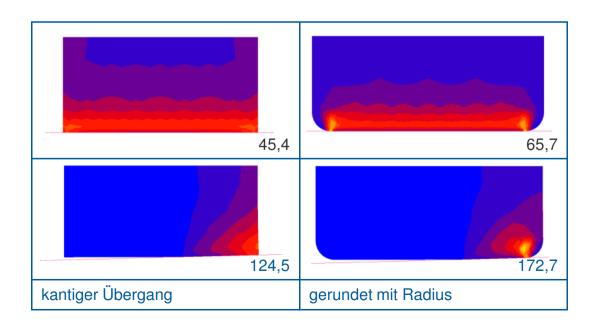
Abmessungen der Kontaktfläche: noch keine Formeln für b und c



5. Rollen mit zylindrischem Laufmantel: Theoretische Linienberührung (4/6)

Gestaltungshinweis:

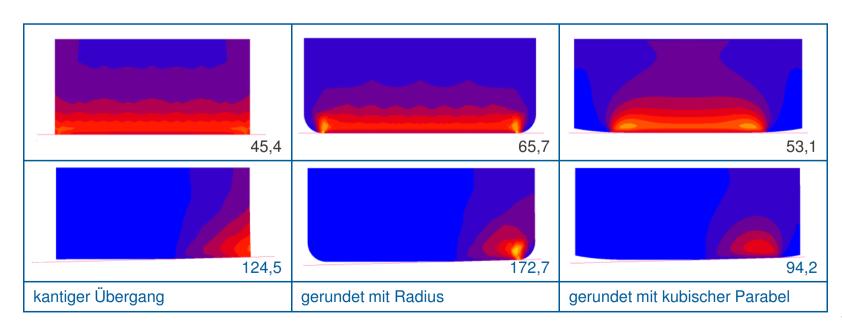
- Übergang Laufmantel / Stirnfläche runden oder anfasen
- Ergebnis erster Untersuchungen: Hohe Spannungskonzentration beim Übergang Laufmantel – Stirnseite insbesondere bei Verkantung (hier: 1,5°)



5. Rollen mit zylindrischem Laufmantel: Theoretische Linienberührung (5/6)

Gestaltungshinweis:

- Übergang Laufmantel / Stirnfläche runden oder anfasen
- Ergebnis erster Untersuchungen: Extreme Spannungskonzentration beim Übergang Laufmantel – Rundungsradius



5. Rollen mit zylindrischem Laufmantel: Theoretische Linienberührung (6/6)

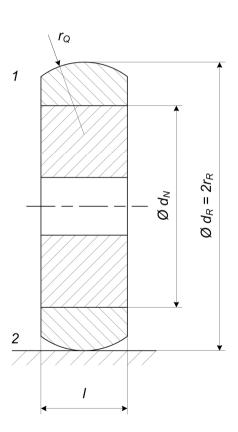
Gestaltungshinweis:

- Übergang Laufmantel / Stirnfläche runden oder anfasen
- Ergebnis erster Untersuchungen: Günstige Verhältnisse bei Übergängen in Form einer kubischen Parabel

6. Rollen mit sphärischem Laufmantel: Theoretische Punktberührung (1/6)

Konvexes Laufmantelprofil (1):

Vergleichskrümmungsradius:


$$R_V = 2 \cdot \frac{r_Q \cdot r_R}{r_Q + r_R}$$

Krümmungsparameter:

$$\eta = \left| \frac{r_Q - r_R}{r_Q + r_R} \right|$$

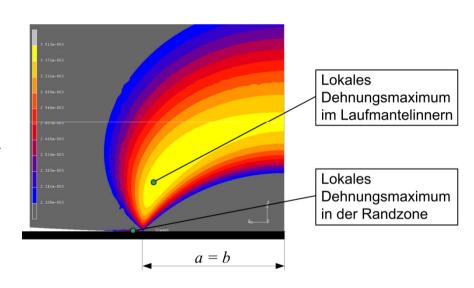
Halbachsen der Kontaktellipse:

$$a \approx (1,11+1,16\cdot\eta)\cdot \sqrt[3]{\frac{F\cdot R_V}{E_V}}$$
$$b \approx (1,11-0,63\cdot\eta)\cdot \sqrt[3]{\frac{F\cdot R_V}{E_V}}$$

6. Rollen mit sphärischem Laufmantel: Theoretische Punktberührung (2/6)

Konvexes Laufmantelprofil (2):

Maximaler Kontaktdruck:


$$p_0 = (0.388 - 0.05 \cdot \eta) \cdot \sqrt[3]{\frac{F \cdot E_V^2}{R_V^2}}$$

Abplattung:

$$w \approx (1,23 - 0,17 \cdot \eta) \cdot \left(1,1 - 0,14 \cdot \frac{d_N}{d_R}\right) \cdot \sqrt[3]{\frac{F^2}{E_V^2 \cdot R_V}}$$

Maximale Dehnung:

$$\varepsilon_{\text{max}} \approx (0.82 \cdot \mu - 0.11) \cdot \frac{p_0}{E_C}$$

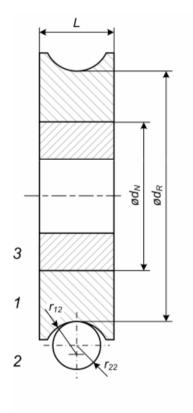
Maximale Vergleichsspannung (SSH):

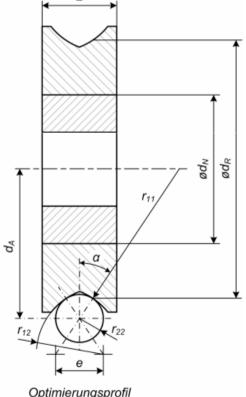
$$\sigma_{V \max} = \sigma_V \left(z \approx \frac{a \cdot b}{a + b} \right) \approx 0.62 \cdot p_0$$

6. Rollen mit sphärischem Laufmantel: Theoretische Punktberührung (3/6)

Konkaves Laufmantelprofil (1):

Vergleichskrümmungsradius:


$$R_V = \frac{2}{\frac{2}{d_R} - \frac{1}{r_1} + \frac{1}{r_2}}$$


Krümmungsparameter

$$\eta = \frac{\left| \frac{2}{d_R} + \frac{1}{r_1} - \frac{1}{r_2} \right|}{\frac{2}{d_R} - \frac{1}{r_1} + \frac{1}{r_2}}$$

Halbachsen der Kontaktellipse:

$$a \approx 1.1 \cdot (1 - \eta^{0.6})^{-0.4} \cdot \sqrt[3]{\frac{F \cdot R_V}{E_V}}$$
$$b \approx 1.1 \cdot (1 - \eta^{0.5})^{0.25} \cdot \sqrt[3]{\frac{F \cdot R_V}{E_V}}$$

Basisprofil

Optimierungsprofil

6. Rollen mit sphärischem Laufmantel: Theoretische Punktberührung (4/6)

Konkaves Laufmantelprofil (2):

Maximaler Kontaktdruck:

$$p_0 = 0.388 \cdot (1 - \eta^2)^{0.2} \cdot \sqrt[3]{\frac{F \cdot E_V^2}{R_V^2}}$$

Abplattung:

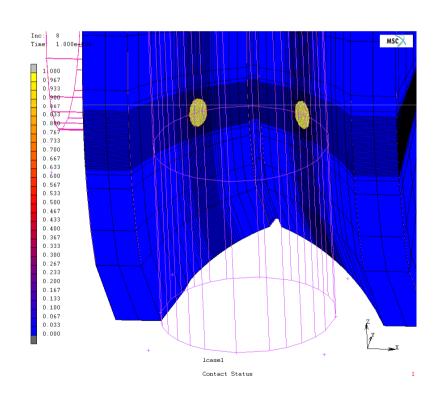
$$w \approx 1,23 \cdot \left(1 - \eta^2\right)^{0,23} \cdot \left(1 - 0,14 \cdot \frac{d_N}{d_R}\right) \cdot \left(1,07 - 0,13 \cdot \frac{l}{d_R}\right) \cdot \sqrt[3]{\frac{F^2}{E_V^2 \cdot R_V}}$$

Maximale Dehnung:

$$\mathcal{E}_{\text{max}} \approx 0.28 \cdot \frac{p_0}{E_C} \approx 0.11 \cdot (1 - \eta^2)^{0.2} \cdot \frac{1}{E_C} \cdot \sqrt[3]{\frac{F \cdot E_V^2}{R_V^2}}$$

Maximale Vergleichsspannung (SSH):

$$\sigma_{V \max} = \sigma_V \left(z \approx \frac{a \cdot b}{a + b} \right) \approx 0.645 \cdot p_0 = 0.25 \cdot \left(1 - \eta^2 \right)^{0.2} \cdot \sqrt[3]{\frac{F \cdot E_V^2}{R_V^2}}$$

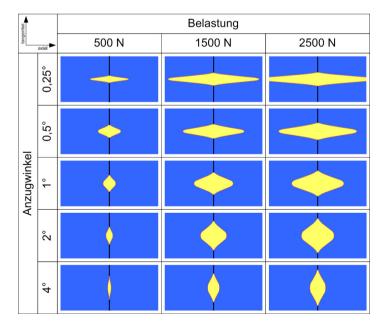


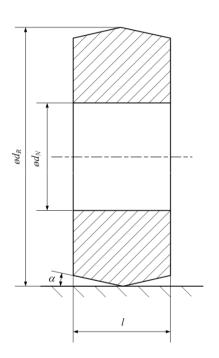
6. Rollen mit sphärischem Laufmantel: Theoretische Punktberührung (5/6)

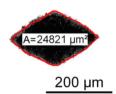
Konkaves Laufmantelprofil (3): Optimierung

Zwei theoretische Berührungspunkte

- Rollenlast verteilt sich auf zwei Kontaktflächen
- Kleinere Kontaktflächen, geringerer Rollwiderstand
- Neigung der beiden Kontaktflächen verbessert die seitliche Führung, erhöht aber den Schlupf
- Optimierungsprozedur zur Bestimmung des Laufmantelprofils: Radius, Zentren

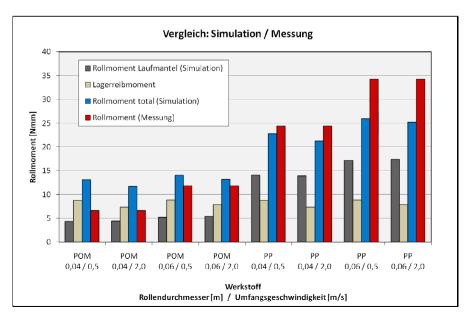


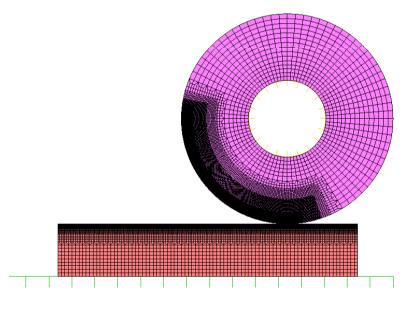



6. Rollen mit sphärischem Laufmantel: Theoretische Punktberührung (6/6)

Dachartiges Laufmantelprofil, z.B. beim Spritzgiessen:

- Hertzsche Theorie nicht direkt anwendbar
- Formeln für kontaktmechanische Grössen in Funktion des Anzugswinkels α entwickelt
- Kontaktflächen in etwa rautenförmig





7. Rollwiderstand zylindrischer Laufrollen

Simulation des Rollwiderstands von Kunststoffrollen mit FEM:

- Erfassung der Viskoelastizität im FEM-Modell
- Bewältigung der grossen Datenmenge (extrem feine Vernetzung)
- Brauchbare Ergebnisse:

7. Rollwiderstand zylindrischer Laufrollen

Abschätzung des Rollwiderstands mit einfacher Formel:

Rollmoment:

$$M_R = F_R \cdot \frac{d_R}{2} \approx 0.68 \cdot \tan \delta_V \cdot F \cdot b \approx 0.73 \cdot \tan \delta_V \cdot \sqrt{\frac{F^3 \cdot d_R}{l_a \cdot E_V}}$$

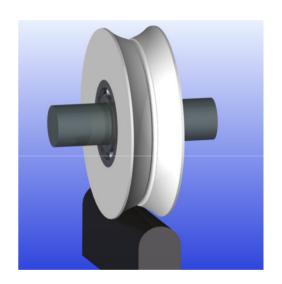
■ Vergleichswert der mechanischen Verlustfaktoren:

$$\tan \delta_V \approx \frac{\tan \delta_L \cdot E_C + \tan \delta_C \cdot E_L}{E_C + E_L}$$

- Voraussetzung: Kenntnis der frequenz- und temperaturabhängigen Speichermoduln und mechanischen Verlustfaktoren beider Werkstoffe
- Näherung mit Ein-Punkt-Daten, z.B. Kurzzeit-Elastizitätsmoduln

8. Fazit und Ausblick

Ergebnisse:


- Verfügbar: Relativ einfach anwendbare Formeln für die kontaktmechanische Auslegung von Kunststoff-Laufmantelrollen
- Berücksichtigung der spezifischen geometrischen Verhältnisse
- Eignung für Berechnungen in der Entwurfsphase, für Tabellenkalkulationen und als Grundlage für allfällige FEM-Analysen

Offene Punkte:

- Einige Resultate für das Verkanten zylindrischer Laufrollen
- Kontaktsituation konvex-konkav
- Kontaktmechanik von Stegrollen und von Antriebsrollen
- Rollwiderstand bei theoretischer Punktberührung, beim Anfahren und mit Einbezug dynamischer Effekte

Kunststoff-Laufmantelrollen und ihre kontaktmechanische Auslegung

Verdankung

Ein wesentlicher Teil der hier vorgestellten Ergebnisse wurde im Forschungsprojekt "Grundlagen für die Auslegung von Kunststoffkonstruktionen" erarbeitet.

Für dessen Förderung sei gedankt:

- Forschungsfonds der HSR, Rapperswil
- Gebert Rüf Stiftung, Basel

Danke für Ihre Aufmerksamkeit ...

Prof. Dipl.-Ing. Johannes Kunz +41 (0)55 222 49 85 jkunz@hsr.ch

